Suppr超能文献

预测肝癌(≤5cm)切除术后复发的有前途的危险因素:肿瘤栖息地分数及其肿瘤周围微环境。

Predicting the recurrence of hepatocellular carcinoma (≤ 5 cm) after resection surgery with promising risk factors: habitat fraction of tumor and its peritumoral micro-environment.

机构信息

Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.

Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.

出版信息

Radiol Med. 2023 Oct;128(10):1181-1191. doi: 10.1007/s11547-023-01695-6. Epub 2023 Aug 19.

Abstract

PURPOSE

Characterizing the composition of hepatocellular carcinoma (HCC) and peritumoral micro-environment may provide sensitive biomarkers. We aimed to predict the recurrence-free survival (RFS) of HCC (≤ 5 cm) with habitat imaging of HCC and its peritumoral micro-environment.

MATERIAL AND METHODS

A total of 264 patients with HCC were included. Taking advantage of the enhancement ratio at the arterial and hepatobiliary phase of contrast-enhanced MRI, all HCCs and their peritumoral tissue of 3 mm and 4 mm were encoded with different habitats. Besides, the quantitative fraction of each habitat of HCC and peritumoral tissue were calculated. Univariable and multivariable Cox regression analysis was performed to select the prognostic factors. The nomogram-based predictor was established. Kaplan-Meier analysis was conducted to stratify the recurrence risk. Fivefold cross-validation was performed to determine the predictive performance with the concordance index (C-Index). Decision curve analysis was used to evaluate the net benefit.

RESULTS

Qualitatively, the spatial distribution of the habitats varied for different survival outcomes. Quantitatively, the fraction of habitat 3 in peritumoral tissue of 4 mm (f-P) was selected as independent risk factors (OR = 89.2, 95% CI = 14.5-549.2, p < 0.001) together with other two clinical variables. Integrating both clinical variables and f-P, a nomogram was constructed and showed high predictive efficacy (C-Index: 0.735, 95% CI 0.617-0.854) and extra net benefit according to the decision curve. Furthermore, patients with low f-P or risk score given by nomogram have far longer RFS than those with high f-P or risk score (stratification by f-P: 131.9 vs 55.0 months and stratification by risk score:131.9 vs 34.1 months).

CONCLUSION

Habitat imaging of HCC and peritumoral microenvironment can be used for effectively and non-invasively estimating the RFS, which holds potential in guiding clinical management and decision making.

摘要

目的

描述肝细胞癌(HCC)及其肿瘤微环境的组成,可能提供敏感的生物标志物。我们旨在利用 HCC 及其肿瘤周围微环境的栖息地成像来预测 HCC(≤5cm)的无复发生存率(RFS)。

材料与方法

共纳入 264 例 HCC 患者。利用对比增强 MRI 的动脉期和肝胆期增强率,对所有 HCC 及其 3mm 和 4mm 肿瘤周围组织进行不同栖息地编码。此外,计算 HCC 和肿瘤周围组织各栖息地的定量分数。进行单变量和多变量 Cox 回归分析以选择预后因素。建立基于列线图的预测因子。进行 Kaplan-Meier 分析以分层复发风险。进行五倍交叉验证以确定一致性指数(C-指数)的预测性能。决策曲线分析用于评估净收益。

结果

定性地,不同生存结果的栖息地空间分布不同。定量地,4mm 肿瘤周围组织中第 3 栖息地的分数(f-P)被选为独立危险因素(OR=89.2,95%CI=14.5-549.2,p<0.001),与其他两个临床变量一起。整合这两个临床变量和 f-P,构建了一个列线图,显示出较高的预测效能(C-指数:0.735,95%CI 0.617-0.854)和根据决策曲线获得的额外净收益。此外,f-P 或列线图风险评分低的患者的 RFS 明显长于 f-P 或风险评分高的患者(按 f-P 分层:131.9 与 55.0 个月;按风险评分分层:131.9 与 34.1 个月)。

结论

HCC 及其肿瘤周围微环境的栖息地成像可用于有效且无创地估计 RFS,这在指导临床管理和决策方面具有潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验