Suppr超能文献

基于磁共振成像的肿瘤内微环境放射组学预测鼻咽癌新辅助化疗治疗反应的研究。

Intratumoral habitat radiomics based on magnetic resonance imaging for preoperative prediction treatment response to neoadjuvant chemotherapy in nasopharyngeal carcinoma.

机构信息

Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jin'an District, Fuzhou, 350014, Fujian, People's Republic of China.

出版信息

Jpn J Radiol. 2024 Dec;42(12):1413-1424. doi: 10.1007/s11604-024-01639-8. Epub 2024 Aug 20.

Abstract

PURPOSE

The aim of this study is to determine intratumoral habitat regions from multi-sequences magnetic resonance imaging (MRI) and to assess the value of those regions for prediction of patient response to neoadjuvant chemotherapy (NAC) in nasopharyngeal carcinoma (NPC).

MATERIALS AND METHODS

Two hundred and ninety seven patients with NPC were enrolled. Multi-sequences MRI data were used to outline three-dimensional volumes of interest (VOI) of the whole tumor. The original imaging data were divided into two groups, which were resampled to an isotropic resolution of 1 × 1 × 1 mm (group_1mm) and 3 × 3 × 3 mm (group_3mm). Nineteen radiomics features were computed for each voxel of three sequences in group_3mm, within the tumor region to extract local information. Then, k-means clustering was implemented to segment the whole tumor regions in two groups. After radiomics features were extracted and dimension reduction, habitat models were built using Multi-Layer Perceptron (MLP) algorithm.

RESULTS

Only T stage was included as the clinical model. The habitat model, which included 10 radiomics features, achieved AUCs of 0.752 and 0.724 in the training and validation cohorts, respectively. Given the slightly better outcome of habitat model, nomogram was developed in combination with habitat model and T stage with the AUC of 0.749 and 0.738 in the training and validation cohorts. The decision curve analysis provides further evidence of the nomogram's clinical practicality.

CONCLUSIONS

A nomogram based on intratumoral habitat predicts the efficacy of NAC in NPC patients, offering the potential to improve both the treatment plan and patient outcomes.

摘要

目的

本研究旨在从多序列磁共振成像(MRI)中确定肿瘤内的生境区域,并评估这些区域对预测鼻咽癌(NPC)患者对新辅助化疗(NAC)反应的价值。

材料和方法

纳入 297 名 NPC 患者。使用多序列 MRI 数据勾勒出整个肿瘤的三维感兴趣区(VOI)。原始成像数据分为两组,分别重新采样到各向同性分辨率为 1×1×1mm(group_1mm)和 3×3×3mm(group_3mm)。在 group_3mm 中,对三组序列的每个体素计算 19 个放射组学特征,以提取局部信息。然后,实施 k-means 聚类对两组肿瘤区域进行分割。提取放射组学特征并进行降维后,使用多层感知器(MLP)算法构建生境模型。

结果

仅将 T 分期纳入临床模型。包含 10 个放射组学特征的生境模型在训练和验证队列中分别获得 0.752 和 0.724 的 AUC。鉴于生境模型的结果略有改善,结合生境模型和 T 分期开发了列线图,在训练和验证队列中的 AUC 分别为 0.749 和 0.738。决策曲线分析进一步证明了列线图的临床实用性。

结论

基于肿瘤内生境的列线图预测了 NPC 患者 NAC 的疗效,有望改善治疗计划和患者结局。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验