Suppr超能文献

优化激发光以实现快速准确的细菌种属鉴定的自体荧光技术

Optimizing Excitation Light for Accurate Rapid Bacterial Species Identification with Autofluorescence.

机构信息

The Graduate School for the Creation of New Photonics Industries, Shizuoka, 431-1202, Japan.

Trauma and Reconstruction Center, Teikyo University Hospital, Tokyo, Japan.

出版信息

J Fluoresc. 2024 Jul;34(4):1737-1745. doi: 10.1007/s10895-023-03383-0. Epub 2023 Aug 19.

Abstract

Rapid identification of bacterial species in patient samples is essential for the treatment of infectious diseases and the economics of health care. In this study, we investigated an algorithm to improve the accuracy of bacterial species identification with fluorescence spectroscopy based on autofluorescence from bacteria, and excitation wavelengths suitable for identification. The diagnostic accuracy of each algorithm for ten bacterial species was verified in a machine learning classifier algorithm. The three machine learning algorithms with the highest diagnostic accuracy, extra tree (ET), logistic regression (LR), and multilayer perceptron (MLP), were used to determine the number and wavelength of excitation wavelengths suitable for the diagnosis of bacterial species. The key excitation wavelengths for the diagnosis of bacterial species were 280 nm, 300 nm, 380 nm, and 480 nm, with 280 nm being the most important. The median diagnostic accuracy was equivalent to that of 200 excitation wavelengths when two excitation wavelengths were used for ET and LR, and three excitation wavelengths for MLP. These results demonstrate that there is an optimum wavelength range of excitation wavelengths required for spectroscopic measurement of bacterial autofluorescence for bacterial species identification, and that measurement of only a few wavelengths in this range is sufficient to achieve sufficient accuracy for diagnosis of bacterial species.

摘要

快速鉴定患者样本中的细菌种类对于传染病的治疗和医疗保健的经济性至关重要。在这项研究中,我们研究了一种利用细菌自发荧光和适合鉴定的激发波长来提高细菌种类鉴定准确性的算法。在机器学习分类器算法中验证了每种算法对十种细菌的诊断准确性。使用具有最高诊断准确性的三种机器学习算法(随机森林、逻辑回归和多层感知机)来确定适合诊断细菌种类的激发波长的数量和波长。用于诊断细菌种类的关键激发波长为 280nm、300nm、380nm 和 480nm,其中 280nm 最重要。当使用 ET 和 LR 时,使用两个激发波长,当使用 MLP 时,使用三个激发波长,中位诊断准确性与 200 个激发波长相当。这些结果表明,对于细菌自发荧光的光谱测量,细菌种类鉴定需要有一个最佳的激发波长范围,并且仅在该范围内测量几个波长就足以达到足够的诊断细菌种类的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验