Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg 85764, Germany; Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Freising 85354, Germany.
Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK.
J Hazard Mater. 2023 Oct 5;459:132299. doi: 10.1016/j.jhazmat.2023.132299. Epub 2023 Aug 15.
Hydrocarbon pollution poses substantial environmental risks to water and soil. Bioremediation, which utilizes microorganisms to manage pollutants, offers a cost-effective solution. However, the role of viruses, particularly bacteriophages (phages), in bioremediation remains unexplored. This study examines the diversity and activity of hydrocarbon-degradation genes encoded by environmental viruses, focusing on phages, within public databases. We identified 57 high-quality phage-encoded auxiliary metabolic genes (AMGs) related to hydrocarbon degradation, which we refer to as virus-encoded hydrocarbon degradation genes (vHYDEGs). These genes are encoded by taxonomically diverse aquatic phages and highlight the under-characterized global virosphere. Six protein families involved in the initial alkane hydroxylation steps were identified. Phylogenetic analyses revealed the diverse evolutionary trajectories of vHYDEGs across habitats, revealing previously unknown biodegraders linked evolutionarily with vHYDEGs. Our findings suggest phage AMGs may contribute to alkane and aromatic hydrocarbon degradation, participating in the initial, rate-limiting hydroxylation steps, thereby aiding hydrocarbon pollution bioremediation and promoting their propagation. To support future research, we developed vHyDeg, a database containing identified vHYDEGs with comprehensive annotations, facilitating the screening of hydrocarbon degradation AMGs and encouraging their bioremediation applications.
烃类污染对水和土壤造成了重大的环境风险。利用微生物来管理污染物的生物修复提供了一种具有成本效益的解决方案。然而,病毒(特别是噬菌体)在生物修复中的作用仍未得到探索。本研究在公共数据库中检查了环境病毒编码的烃类降解基因(特别是噬菌体)的多样性和活性。我们鉴定了 57 个与烃类降解相关的高质量噬菌体编码辅助代谢基因(AMGs),我们称之为病毒编码的烃类降解基因(vHYDEGs)。这些基因由分类学上多样化的水生噬菌体编码,并突出了全球未被充分描述的病毒圈。确定了涉及烷烃初始羟化步骤的六个蛋白家族。系统发育分析揭示了 vHYDEGs 在不同生境中的多样化进化轨迹,揭示了以前未知的与 vHYDEGs 进化相关的生物降解剂。我们的研究结果表明,噬菌体 AMGs 可能有助于烷烃和芳烃的降解,参与初始的限速羟化步骤,从而有助于烃类污染的生物修复并促进其传播。为了支持未来的研究,我们开发了 vHyDeg 数据库,其中包含了经过全面注释的鉴定出的 vHYDEGs,方便了烃类降解 AMGs 的筛选,并鼓励了它们在生物修复中的应用。