Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK.
Department of Pediatrics, Rady Children's Hospital San Diego/University of California San Diego School of Medicine, La Jolla, CA, USA.
Med. 2023 Sep 8;4(9):635-654.e5. doi: 10.1016/j.medj.2023.06.007. Epub 2023 Aug 18.
Appropriate treatment and management of children presenting with fever depend on accurate and timely diagnosis, but current diagnostic tests lack sensitivity and specificity and are frequently too slow to inform initial treatment. As an alternative to pathogen detection, host gene expression signatures in blood have shown promise in discriminating several infectious and inflammatory diseases in a dichotomous manner. However, differential diagnosis requires simultaneous consideration of multiple diseases. Here, we show that diverse infectious and inflammatory diseases can be discriminated by the expression levels of a single panel of genes in blood.
A multi-class supervised machine-learning approach, incorporating clinical consequence of misdiagnosis as a "cost" weighting, was applied to a whole-blood transcriptomic microarray dataset, incorporating 12 publicly available datasets, including 1,212 children with 18 infectious or inflammatory diseases. The transcriptional panel identified was further validated in a new RNA sequencing dataset comprising 411 febrile children.
We identified 161 transcripts that classified patients into 18 disease categories, reflecting individual causative pathogen and specific disease, as well as reliable prediction of broad classes comprising bacterial infection, viral infection, malaria, tuberculosis, or inflammatory disease. The transcriptional panel was validated in an independent cohort and benchmarked against existing dichotomous RNA signatures.
Our data suggest that classification of febrile illness can be achieved with a single blood sample and opens the way for a new approach for clinical diagnosis.
European Union's Seventh Framework no. 279185; Horizon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z); Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR Imperial BRC.
准确及时的诊断是儿童发热时进行适当治疗和管理的关键,但目前的诊断检测缺乏敏感性和特异性,且往往无法及时提供初始治疗依据。作为病原体检测的替代方法,血液中的宿主基因表达谱已被证明可用于以二分法区分几种感染性和炎症性疾病。然而,鉴别诊断需要同时考虑多种疾病。在这里,我们展示了通过血液中单个基因表达谱可以区分多种感染性和炎症性疾病。
采用多类有监督机器学习方法,将误诊的临床后果作为“代价”权重,应用于全血转录组微阵列数据集,该数据集纳入了 12 个公开的数据集,包括 1212 名患有 18 种感染性或炎症性疾病的儿童。进一步在包含 411 名发热儿童的新 RNA 测序数据集中验证了所识别的转录谱。
我们鉴定出 161 个转录本,将患者分为 18 个疾病类别,反映了个体病原体和特定疾病,以及对包括细菌感染、病毒感染、疟疾、结核病或炎症性疾病在内的广泛类别进行可靠预测。该转录谱在独立队列中得到验证,并与现有的二分 RNA 特征进行了基准比较。
我们的数据表明,通过单个血样可以实现发热性疾病的分类,并为临床诊断开辟了新的方法。
欧盟第七框架计划(279185 号);欧盟地平线 2020 计划(668303 PERFORM 号);惠康信托基金(206508/Z/17/Z 号);医学研究基金会(MRF-160-0008-ELP-KAFO-C0801 号);英国国家健康研究所帝国生物医学研究理事会(NIHR Imperial BRC)。