Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; Center for Health Science Innovation, Osaka Metropolitan University, Osaka, Japan.
Lancet Healthy Longev. 2023 Sep;4(9):e478-e486. doi: 10.1016/S2666-7568(23)00133-2. Epub 2023 Aug 16.
Chest radiographs are widely available and cost-effective; however, their usefulness as a biomarker of ageing using multi-institutional data remains underexplored. The aim of this study was to develop a biomarker of ageing from chest radiography and examine the correlation between the biomarker and diseases.
In this retrospective, multi-institutional study, we trained, tuned, and externally tested an artificial intelligence (AI) model to estimate the age of healthy individuals using chest radiographs as a biomarker. For the biomarker modelling phase of the study, we used healthy chest radiographs consecutively collected between May 22, 2008, and Dec 28, 2021, from three institutions in Japan. Data from two institutions were used for training, tuning, and internal testing, and data from the third institution were used for external testing. To evaluate the performance of the AI model in estimating ages, we calculated the correlation coefficient, mean square error, root mean square error, and mean absolute error. The correlation investigation phase of the study included chest radiographs from individuals with a known disease that were consecutively collected between Jan 1, 2018, and Dec 31, 2021, from an additional two institutions in Japan. We investigated the odds ratios (ORs) for various diseases given the difference between the AI-estimated age and chronological age (ie, the difference-age).
We included 101 296 chest radiographs from 70 248 participants across five institutions. In the biomarker modelling phase, the external test dataset from 3467 healthy participants included 8046 radiographs. Between the AI-estimated age and chronological age, the correlation coefficient was 0·95 (99% CI 0·95-0·95), the mean square error was 15·0 years (99% CI 14·0-15·0), the root mean square error was 3·8 years (99% CI 3·8-3·9), and the mean absolute error was 3·0 years (99% CI 3·0-3·1). In the correlation investigation phase, the external test datasets from 34 197 participants with a known disease included 34 197 radiographs. The ORs for difference-age were as follows: 1·04 (99% CI 1·04-1·05) for hypertension; 1·02 (1·01-1·03) for hyperuricaemia; 1·05 (1·03-1·06) for chronic obstructive pulmonary disease; 1·08 (1·06-1·09) for interstitial lung disease; 1·05 (1·03-1·06) for chronic renal failure; 1·04 (1·03-1·06) for atrial fibrillation; 1·03 (1·02-1·04) for osteoporosis; and 1·05 (1·03-1·06) for liver cirrhosis.
The AI-estimated age using chest radiographs showed a strong correlation with chronological age in the healthy cohorts. Furthermore, in cohorts of individuals with known diseases, the difference between estimated age and chronological age correlated with various chronic diseases. The use of this biomarker might pave the way for enhanced risk stratification methodologies, individualised therapeutic interventions, and innovative early diagnostic and preventive approaches towards age-associated pathologies.
None.
For the Japanese translation of the abstract see Supplementary Materials section.
胸部 X 光片应用广泛且具有成本效益;然而,其作为多机构数据中衰老的生物标志物的用途仍未得到充分探索。本研究旨在利用胸部 X 光片开发一种衰老的生物标志物,并研究该生物标志物与疾病之间的相关性。
在这项回顾性、多机构研究中,我们使用人工智能(AI)模型来估计健康个体的年龄,该模型使用胸部 X 光片作为生物标志物。在研究的生物标志物建模阶段,我们使用了 2008 年 5 月 22 日至 2021 年 12 月 28 日期间日本三所机构连续收集的健康胸部 X 光片。来自两家机构的数据用于训练、调整和内部测试,第三家机构的数据用于外部测试。为了评估 AI 模型在估计年龄方面的性能,我们计算了相关系数、均方误差、均方根误差和平均绝对误差。在研究的相关性调查阶段,我们调查了来自日本另外两家机构的已知疾病患者的连续收集的胸部 X 光片(2018 年 1 月 1 日至 2021 年 12 月 31 日)。我们调查了 AI 估计年龄与实际年龄(即差异年龄)之间的差异与各种疾病之间的比值比(OR)。
我们纳入了来自五家机构的 70248 名参与者的 101296 张胸部 X 光片。在生物标志物建模阶段,来自 3467 名健康参与者的外部测试数据集包含 8046 张 X 光片。在 AI 估计年龄和实际年龄之间,相关系数为 0.95(99%CI 0.95-0.95),均方误差为 15.0 岁(99%CI 14.0-15.0),均方根误差为 3.8 岁(99%CI 3.8-3.9),平均绝对误差为 3.0 岁(99%CI 3.0-3.1)。在相关性调查阶段,来自 34197 名已知疾病患者的外部测试数据集包含 34197 张 X 光片。差异年龄的 OR 如下:高血压为 1.04(99%CI 1.04-1.05);高尿酸血症为 1.02(1.01-1.03);慢性阻塞性肺疾病为 1.05(1.03-1.06);间质性肺病为 1.08(1.06-1.09);慢性肾衰竭为 1.05(1.03-1.06);心房颤动为 1.04(1.03-1.06);骨质疏松症为 1.03(1.02-1.04);肝硬化为 1.05(1.03-1.06)。
使用胸部 X 光片估计的 AI 年龄与健康队列中的实际年龄有很强的相关性。此外,在已知疾病患者的队列中,估计年龄与实际年龄的差异与各种慢性疾病相关。该生物标志物的使用可能为增强风险分层方法、个体化治疗干预、创新的早期诊断和预防方法铺平道路,以应对与年龄相关的病理。
无。