Suppr超能文献

利用胸部 X 光片对深度学习模型进行生物年龄的外部测试。

External Testing of a Deep Learning Model to Estimate Biologic Age Using Chest Radiographs.

机构信息

From the Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea (J.H.L., J.M.G., H.K.); Department of Biomedical Engineering, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Korea (D.L.); Massachusetts General Hospital Cardiovascular Imaging Research Center and Harvard Medical School, Boston, Mass (M.T.L., V.K.R.); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (J.M.G.); Cancer Research Institute, Seoul National University, Seoul, Korea (J.M.G.); Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Korea (Y.C.); and Department of Internal Medicine, Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea (S.H.C.).

出版信息

Radiol Artif Intell. 2024 Sep;6(5):e230433. doi: 10.1148/ryai.230433.

Abstract

Purpose To assess the prognostic value of a deep learning-based chest radiographic age (hereafter, CXR-Age) model in a large external test cohort of Asian individuals. Materials and Methods This single-center, retrospective study included chest radiographs from consecutive, asymptomatic Asian individuals aged 50-80 years who underwent health checkups between January 2004 and June 2018. This study performed a dedicated external test of a previously developed CXR-Age model, which predicts an age adjusted based on the risk of all-cause mortality. Adjusted hazard ratios (HRs) of CXR-Age for all-cause, cardiovascular, lung cancer, and respiratory disease mortality were assessed using multivariable Cox or Fine-Gray models, and their added values were evaluated by likelihood ratio tests. Results A total of 36 924 individuals (mean chronological age, 58 years ± 7 [SD]; CXR-Age, 60 years ± 5; 22 352 male) were included. During a median follow-up of 11.0 years, 1250 individuals (3.4%) died, including 153 cardiovascular (0.4%), 166 lung cancer (0.4%), and 98 respiratory (0.3%) deaths. CXR-Age was a significant risk factor for all-cause (adjusted HR at chronological age of 50 years, 1.03; at 60 years, 1.05; at 70 years, 1.07), cardiovascular (adjusted HR, 1.11), lung cancer (adjusted HR for individuals who formerly smoked, 1.12; for those who currently smoke, 1.05), and respiratory disease (adjusted HR, 1.12) mortality ( < .05 for all). The likelihood ratio test demonstrated added prognostic value of CXR-Age to clinical factors, including chronological age for all outcomes ( < .001 for all). Conclusion Deep learning-based chest radiographic age was associated with various survival outcomes and had added value to clinical factors in asymptomatic Asian individuals, suggesting its generalizability. Conventional Radiography, Thorax, Heart, Lung, Mediastinum, Outcomes Analysis, Quantification, Prognosis, Convolutional Neural Network (CNN) © RSNA, 2024 See also the commentary by Adams and Bressem in this issue.

摘要

目的 在一个大型亚洲外部测试队列中评估基于深度学习的胸部 X 线片年龄(以下简称 CXR-Age)模型的预后价值。

材料与方法 这项单中心、回顾性研究纳入了 2004 年 1 月至 2018 年 6 月期间接受健康检查的年龄在 50-80 岁、连续的、无症状的亚洲个体的胸部 X 线片。本研究专门对先前开发的 CXR-Age 模型进行了外部测试,该模型可根据全因死亡率的风险预测校正年龄。使用多变量 Cox 或 Fine-Gray 模型评估 CXR-Age 对全因、心血管、肺癌和呼吸疾病死亡率的调整后的危险比(HR),并通过似然比检验评估其附加价值。

结果 共纳入 36924 名个体(平均实际年龄 58 岁±7[标准差];CXR-Age 60 岁±5;22352 名男性)。中位随访 11.0 年期间,有 1250 名个体(3.4%)死亡,包括 153 例心血管疾病(0.4%)、166 例肺癌(0.4%)和 98 例呼吸疾病(0.3%)死亡。CXR-Age 是全因(50 岁实际年龄时的调整 HR 为 1.03;60 岁时为 1.05;70 岁时为 1.07)、心血管(调整 HR 为 1.11)、肺癌(以前吸烟个体的调整 HR 为 1.12;当前吸烟个体的调整 HR 为 1.05)和呼吸疾病(调整 HR 为 1.12)死亡的显著危险因素(<0.05 均有统计学意义)。似然比检验显示 CXR-Age 对临床因素(所有结局均<0.001)具有附加预后价值,包括实际年龄。

结论 在无症状亚洲个体中,基于深度学习的胸部 X 线片年龄与各种生存结局相关,并且对临床因素具有附加价值,提示其具有普遍性。

常规放射学,胸部,心脏,肺,纵隔,预后分析,量化,预测,卷积神经网络(CNN)。

另见本期 Adams 和 Bressem 的评论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfb0/11427929/f2d37d4c1f5f/ryai.230433.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验