Suppr超能文献

利用智能手环生理数据预测相对于预计分娩日期的分娩发动情况。

Predicting labor onset relative to the estimated date of delivery using smart ring physiological data.

作者信息

Erickson Elise N, Gotlieb Neta, Pereira Leonardo M, Myatt Leslie, Mosquera-Lopez Clara, Jacobs Peter G

机构信息

College of Nursing / College of Pharmacy, The University of Arizona, Tucson, AZ, USA.

Midwifery Division, School of Nursing, Oregon Health & Science University, Portland, OR, USA.

出版信息

NPJ Digit Med. 2023 Aug 19;6(1):153. doi: 10.1038/s41746-023-00902-y.

Abstract

The transition from pregnancy into parturition is physiologically directed by maternal, fetal and placental tissues. We hypothesize that these processes may be reflected in maternal physiological metrics. We enrolled pregnant participants in the third-trimester (n = 118) to study continuously worn smart ring devices monitoring heart rate, heart rate variability, skin temperature, sleep and physical activity from negative temperature coefficient, 3-D accelerometer and infrared photoplethysmography sensors. Weekly surveys assessed labor symptoms, pain, fatigue and mood. We estimated the association between each metric, gestational age, and the likelihood of a participant's labor beginning prior to (versus after) the clinical estimated delivery date (EDD) of 40.0 weeks with mixed effects regression. A boosted random forest was trained on the physiological metrics to predict pregnancies that naturally passed the EDD versus undergoing onset of labor prior to the EDD. Here we report that many raw sleep, activity, pain, fatigue and labor symptom metrics are correlated with gestational age. As gestational age advances, pregnant individuals have lower resting heart rate 0.357 beats/minute/week, 0.84 higher heart rate variability (milliseconds) and shorter durations of physical activity and sleep. Further, random forest predictions determine pregnancies that would pass the EDD with accuracy of 0.71 (area under the receiver operating curve). Self-reported symptoms of labor correlate with increased gestational age and not with the timing of labor (relative to EDD) or onset of spontaneous labor. The use of maternal smart ring-derived physiological data in the third-trimester may improve prediction of the natural duration of pregnancy relative to the EDD.

摘要

从妊娠到分娩的转变在生理上是由母体、胎儿和胎盘组织引导的。我们假设这些过程可能反映在母体生理指标中。我们招募了孕晚期的参与者(n = 118),以研究持续佩戴的智能戒指设备,该设备通过负温度系数、三维加速度计和红外光电容积脉搏波描记法传感器监测心率、心率变异性、皮肤温度、睡眠和身体活动。每周的调查评估分娩症状、疼痛、疲劳和情绪。我们使用混合效应回归估计每个指标、孕周与参与者在临床估计分娩日期(EDD)40.0周之前(相对于之后)开始分娩的可能性之间的关联。基于生理指标训练了一个增强随机森林,以预测自然超过EDD的妊娠与在EDD之前开始分娩的妊娠。在此我们报告,许多原始的睡眠、活动、疼痛、疲劳和分娩症状指标与孕周相关。随着孕周的增加,孕妇的静息心率降低0.357次/分钟/周,心率变异性增加0.84(毫秒),身体活动和睡眠持续时间缩短。此外,随机森林预测确定超过EDD的妊娠的准确率为0.71(受试者操作特征曲线下面积)。自我报告的分娩症状与孕周增加相关,而与分娩时间(相对于EDD)或自然分娩的开始无关。在孕晚期使用源自母体智能戒指的生理数据可能会改善相对于EDD的妊娠自然持续时间的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9968/10439919/bde22ca48f11/41746_2023_902_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验