Suppr超能文献

血小板收缩性与血纤蛋白/红细胞弹性在血凝块回缩中的相互作用

Interplay of Platelet Contractility and Elasticity of Fibrin/Erythrocytes in Blood Clot Retraction.

作者信息

Tutwiler Valerie, Wang Hailong, Litvinov Rustem I, Weisel John W, Shenoy Vivek B

机构信息

Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, Pennsylvania.

Department of Modern Mechanics, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui, China; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

Biophys J. 2017 Feb 28;112(4):714-723. doi: 10.1016/j.bpj.2017.01.005.

Abstract

Blood clot contraction (retraction) is driven by platelet-generated forces propagated by the fibrin network and results in clot shrinkage and deformation of erythrocytes. To elucidate the mechanical nature of this process, we developed a model that combines an active contractile motor element with passive viscoelastic elements. Despite its importance for thrombosis and wound healing, clot contraction is poorly understood. This model predicts how clot contraction occurs due to active contractile platelets interacting with a viscoelastic material, rather than to the poroelastic nature of fibrin, and explains the observed dynamics of clot size, ultrastructure, and measured forces. Mechanically passive erythrocytes and fibrin are present in series and parallel to active contractile cells. This mechanical interplay induces compressive and tensile resistance, resulting in increased contractile force and a reduced extent of contraction in the presence of erythrocytes. This experimentally validated model provides the fundamental mechanical basis for understanding contraction of blood clots.

摘要

血凝块收缩(回缩)由血小板产生的力驱动,该力通过纤维蛋白网络传播,导致血凝块收缩以及红细胞变形。为阐明这一过程的力学本质,我们开发了一个模型,该模型将主动收缩运动元件与被动粘弹性元件相结合。尽管血凝块收缩对血栓形成和伤口愈合至关重要,但人们对其了解甚少。该模型预测了由于主动收缩的血小板与粘弹性材料相互作用而导致的血凝块收缩,而非由于纤维蛋白的多孔弹性性质,并解释了观察到的血凝块大小、超微结构和测量力的动态变化。机械上被动的红细胞和纤维蛋白与主动收缩细胞串联和平行存在。这种机械相互作用产生压缩和拉伸阻力,导致在存在红细胞的情况下收缩力增加而收缩程度降低。这个经过实验验证的模型为理解血凝块收缩提供了基本的力学基础。

相似文献

7
Molecular basis of clot retraction and its role in wound healing.血凝块回缩的分子基础及其在伤口愈合中的作用。
Thromb Res. 2023 Nov;231:159-169. doi: 10.1016/j.thromres.2022.08.010. Epub 2022 Aug 19.
10
Endogenous fibrinolysis facilitates clot retraction in vivo.内源性纤维蛋白溶解有助于体内血栓的回缩。
Blood. 2017 Dec 7;130(23):2453-2462. doi: 10.1182/blood-2017-06-789032. Epub 2017 Oct 26.

引用本文的文献

9
Blood clot contraction: Mechanisms, pathophysiology, and disease.血凝块收缩:机制、病理生理学与疾病
Res Pract Thromb Haemost. 2022 Dec 23;7(1):100023. doi: 10.1016/j.rpth.2022.100023. eCollection 2023 Jan.

本文引用的文献

1
Fibrin mechanical properties and their structural origins.纤维蛋白的力学性能及其结构根源。
Matrix Biol. 2017 Jul;60-61:110-123. doi: 10.1016/j.matbio.2016.08.003. Epub 2016 Aug 20.
4
Fluid Mechanics of Blood Clot Formation.血液凝块形成的流体力学
Annu Rev Fluid Mech. 2015 Jan 1;47:377-403. doi: 10.1146/annurev-fluid-010814-014513.
7
A constitutive model for a maturing fibrin network.成熟纤维蛋白网络的本构模型。
Biophys J. 2014 Jul 15;107(2):504-513. doi: 10.1016/j.bpj.2014.05.035.
9
Structural basis for the nonlinear mechanics of fibrin networks under compression.纤维蛋白网络在压缩下非线性力学的结构基础。
Biomaterials. 2014 Aug;35(25):6739-49. doi: 10.1016/j.biomaterials.2014.04.056. Epub 2014 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验