Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
Cytotherapy. 2023 Nov;25(11):1145-1148. doi: 10.1016/j.jcyt.2023.07.010. Epub 2023 Aug 19.
The current approach for preventing hemolysis of red blood cells (RBCs) in major ABO-incompatible bone marrow (BM) grafts after infusion is to deplete RBCs from BM products before transplantation. Traditionally, manual density separation (MDS) using Ficoll-Hypaque (Cytiva Sweden AB, Uppsala, Sweden has been used to accomplish RBC depletion. This process yields good CD34 cell recovery, but it requires open manipulation and is labor-intensive and time-consuming. We hypothesized that an alternative automated method using Haemonetics Cell Saver 5+ (Haemonetics Corporation, Boston, MA, USA) would offer equivalent RBC depletion and CD34 cell recovery. Small marrow volumes from pediatric donors can be processed using Cell Saver (CS) without adding the third-party RBCs necessary for other automated methods.
This retrospective analysis comprised data from 58 allogeneic BM grafts. RBC depletion and CD34 cell recovery from BM using MDS (35 grafts) were compared with CS (14 grafts). Nine products underwent RBC depletion using CS with Ficoll (CS-F) when RBC volume was less than 125 mL.
Linear regression analysis of log transformation of CD34 cell recovery adjusted for log transformation of both baseline CD34 cell content and baseline total volume showed no significant difference between MDS and CS (estimated coefficient, -0.121, P = 0.096). All products contained an RBC volume of less than 0.25 mL/kg post-processing. CD34 cell recovery with CS-F was comparable to MDS and CS and suitable for pediatric recipients of allogeneic hematopoietic cell transplantation.
We provide evidence that an automated method using Haemonetics Cell Saver 5+ achieves RBC depletion and CD34 cell recovery comparable to MDS when adjusting for baseline factors.
目前,在输注后防止主要 ABO 不相容骨髓(BM)移植物中红细胞(RBC)溶血的方法是在移植前从 BM 制品中去除 RBC。传统上,使用 Ficoll-Hypaque(Cytiva Sweden AB,瑞典乌普萨拉)进行手动密度分离(MDS)已用于实现 RBC 耗竭。该过程可获得良好的 CD34 细胞回收率,但需要开放操作,且劳动强度大,耗时较长。我们假设,使用 Haemonetics Cell Saver 5+(Haemonetics Corporation,马萨诸塞州波士顿,美国)的替代自动化方法将提供等效的 RBC 耗竭和 CD34 细胞回收率。儿科供体的小骨髓体积可以使用 Cell Saver(CS)进行处理,而无需添加其他自动化方法所需的第三方 RBC。
本回顾性分析包括 58 例异基因 BM 移植物的数据。使用 MDS(35 个移植物)和 CS(14 个移植物)比较了从 BM 中进行 RBC 耗竭和 CD34 细胞回收。当 RBC 体积小于 125 mL 时,有 9 个制品使用含有 Ficoll 的 CS(CS-F)进行 RBC 耗竭。
对基线 CD34 细胞含量和基线总体积的对数转换进行调整后的 CD34 细胞回收率的对数转换线性回归分析显示,MDS 和 CS 之间没有显著差异(估计系数,-0.121,P=0.096)。所有制品在加工后均含有少于 0.25 mL/kg 的 RBC 体积。CS-F 的 CD34 细胞回收率与 MDS 和 CS 相当,适用于异基因造血细胞移植的儿科受者。
我们提供的证据表明,当调整基线因素时,使用 Haemonetics Cell Saver 5+的自动化方法可实现与 MDS 相当的 RBC 耗竭和 CD34 细胞回收率。