Zeng Fengmi, Yang Yihui, Li Xianhui, Yang Yang
Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
ACS Appl Mater Interfaces. 2023 Aug 30;15(34):40839-40845. doi: 10.1021/acsami.3c07914. Epub 2023 Aug 21.
The demand for cesium is expanding rapidly in light of its necessity in high-tech industries. Thus, technologies that can efficiently extract cesium from the sources are critically needed. Here, the metal-organic framework (MOF) membranes created from -Cl and -NH functionalized MIL-53 enabled highly selective transport of cesium ions. The angstrom-scale pore windows in these MOFs conduct Cs ions at high throughput, 2 orders of magnitude faster than other marginally larger ions. Ascribed to size sieving effects, MIL-53-NH containing 6.6 Å size channels realized an exceedingly high Cs/Li selectivity up to ∼315. The rapid transport of Cs ions relative to other ions is greatly dependent on the precision of the angstrom-scale pores. Our work highlights the enormous potential of realizing high ion selectivity with MOFs and drives the further development of these materials in a variety of advanced separations.
鉴于铯在高科技产业中的必要性,其需求正在迅速扩大。因此,迫切需要能够从源中高效提取铯的技术。在此,由-Cl和-NH功能化的MIL-53制备的金属有机框架(MOF)膜实现了铯离子的高选择性传输。这些MOF中埃级的孔窗以高通量传导Cs离子,比其他稍大的离子快2个数量级。归因于尺寸筛分效应,含有6.6 Å尺寸通道的MIL-53-NH实现了高达约315的极高Cs/Li选择性。Cs离子相对于其他离子的快速传输很大程度上取决于埃级孔的精度。我们的工作突出了用MOF实现高离子选择性的巨大潜力,并推动了这些材料在各种先进分离中的进一步发展。