Suppr超能文献

一种用于结直肠癌肝转移肝切除术后预后预测的机器学习模型。

A machine learning model for colorectal liver metastasis post-hepatectomy prognostications.

作者信息

Lam Cynthia Sin Nga, Bharwani Alina Ashok, Chan Evelyn Hui Yi, Chan Vernice Hui Yan, Au Howard Lai Ho, Ho Margaret Kay, Rashed Shireen, Kwong Bernard Ming Hong, Fang Wentao, Ma Ka Wing, Lo Chung Mau, Cheung Tan To

机构信息

Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

出版信息

Hepatobiliary Surg Nutr. 2023 Aug 1;12(4):495-506. doi: 10.21037/hbsn-21-453. Epub 2022 Jul 12.

Abstract

BACKGROUND

Currently, surgical resection is the mainstay for colorectal liver metastases (CRLM) management and the only potentially curative treatment modality. Prognostication tools can support patient selection for surgical resection to maximize therapeutic benefit. This study aimed to develop a survival prediction model using machine learning based on a multicenter patient sample in Hong Kong.

METHODS

Patients who underwent hepatectomy for CRLM between 1 January 2009 and 31 December 2018 in four hospitals in Hong Kong were included in the study. Survival analysis was performed using Cox proportional hazards (CPH). A stepwise selection on Cox multivariable models with Least Absolute Shrinkage and Selection Operator (LASSO) regression was applied to a multiply-imputed dataset to build a prediction model. The model was validated in the validation set, and its performance was compared with that of Fong Clinical Risk Score (CRS) using concordance index.

RESULTS

A total of 572 patients were included with a median follow-up of 3.6 years. The full models for overall survival (OS) and recurrence-free survival (RFS) consist of the same 8 established and novel variables, namely colorectal cancer nodal stage, CRLM neoadjuvant treatment, Charlson Comorbidity Score, pre-hepatectomy bilirubin and carcinoembryonic antigen (CEA) levels, CRLM largest tumor diameter, extrahepatic metastasis detected on positron emission-tomography (PET)-scan as well as KRAS status. Our CRLM Machine-learning Algorithm Prognostication model (CMAP) demonstrated better ability to predict OS (C-index =0.651), compared with the Fong CRS for 1-year (C-index =0.571) and 5-year OS (C-index =0.574). It also achieved a C-index of 0.651 for RFS.

CONCLUSIONS

We present a promising machine learning algorithm to individualize prognostications for patients following resection of CRLM with good discriminative ability.

摘要

背景

目前,手术切除是结直肠癌肝转移(CRLM)治疗的主要手段,也是唯一具有潜在治愈可能的治疗方式。预后评估工具可辅助选择适合手术切除的患者,以实现最大治疗获益。本研究旨在基于香港多中心患者样本,运用机器学习开发生存预测模型。

方法

纳入2009年1月1日至2018年12月31日期间在香港四家医院接受CRLM肝切除术的患者。采用Cox比例风险(CPH)模型进行生存分析。对多重填补数据集应用带有最小绝对收缩和选择算子(LASSO)回归的Cox多变量模型逐步选择法,构建预测模型。在验证集中对模型进行验证,并使用一致性指数将其性能与Fong临床风险评分(CRS)进行比较。

结果

共纳入572例患者,中位随访时间为3.6年。总生存(OS)和无复发生存(RFS)的完整模型由相同的8个既定和新变量组成,即结直肠癌淋巴结分期、CRLM新辅助治疗、Charlson合并症评分、肝切除术前胆红素和癌胚抗原(CEA)水平、CRLM最大肿瘤直径、正电子发射断层扫描(PET)检测到的肝外转移以及KRAS状态。我们的CRLM机器学习算法预后模型(CMAP)在预测OS方面表现出更好的能力(C指数=0.651),相比Fong CRS在1年(C指数=0.571)和5年OS(C指数=0.574)的预测能力。其RFS的C指数也达到了0.651。

结论

我们提出了一种有前景的机器学习算法,可为CRLM切除术后患者进行个性化预后评估,且具有良好的判别能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53e2/10432293/27b61c77e05c/hbsn-12-04-495-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验