Suppr超能文献

在大规模远程样本中使用机器学习从自动语音生物标志物预测心理努力。

Prediction of mental effort derived from an automated vocal biomarker using machine learning in a large-scale remote sample.

作者信息

Taptiklis Nick, Su Merina, Barnett Jennifer H, Skirrow Caroline, Kroll Jasmin, Cormack Francesca

机构信息

Cambridge Cognition, Tunbridge Court, Cambridge, United Kingdom.

Department of Psychiatry, Herschel Smith Building for Brain & Mind Sciences, University of Cambridge, Cambridge, United Kingdom.

出版信息

Front Artif Intell. 2023 Aug 3;6:1171652. doi: 10.3389/frai.2023.1171652. eCollection 2023.

Abstract

INTRODUCTION

Biomarkers of mental effort may help to identify subtle cognitive impairments in the absence of task performance deficits. Here, we aim to detect mental effort on a verbal task, using automated voice analysis and machine learning.

METHODS

Audio data from the digit span backwards task were recorded and scored with automated speech recognition using the online platform NeuroVocalix, yielding usable data from 2,764 healthy adults (1,022 male, 1,742 female; mean age 31.4 years). Acoustic features were aggregated across each trial and normalized within each subject. Cognitive load was dichotomized for each trial by categorizing trials at >0.6 of each participants' maximum span as "high load." Data were divided into training (60%), test (20%), and validate (20%) datasets, each containing different participants. Training and test data were used in model building and hyper-parameter tuning. Five classification models (Logistic Regression, Naive Bayes, Support Vector Machine, Random Forest, and Gradient Boosting) were trained to predict cognitive load ("high" vs. "low") based on acoustic features. Analyses were limited to correct responses. The model was evaluated using the validation dataset, across all span lengths and within the subset of trials with a four-digit span. Classifier discriminant power was examined with Receiver Operating Curve (ROC) analysis.

RESULTS

Participants reached a mean span of 6.34 out of 8 items (SD = 1.38). The Gradient Boosting classifier provided the best performing model on test data (AUC = 0.98) and showed excellent discriminant power for cognitive load on the validation dataset, across all span lengths (AUC = 0.99), and for four-digit only utterances (AUC = 0.95).

DISCUSSION

A sensitive biomarker of mental effort can be derived from vocal acoustic features in remotely administered verbal cognitive tests. The use-case of this biomarker for improving sensitivity of cognitive tests to subtle pathology now needs to be examined.

摘要

引言

脑力劳动的生物标志物可能有助于在没有任务表现缺陷的情况下识别细微的认知障碍。在此,我们旨在使用自动语音分析和机器学习来检测言语任务中的脑力劳动。

方法

记录数字广度倒背任务的音频数据,并使用在线平台NeuroVocalix通过自动语音识别进行评分,从2764名健康成年人(1022名男性,1742名女性;平均年龄31.4岁)中获得可用数据。在每个试验中汇总声学特征,并在每个受试者内进行标准化。通过将每个参与者最大广度的>0.6的试验分类为“高负荷”,对每个试验的认知负荷进行二分法划分。数据分为训练集(60%)、测试集(20%)和验证集(20%),每个数据集包含不同的参与者。训练数据和测试数据用于模型构建和超参数调整。训练了五个分类模型(逻辑回归、朴素贝叶斯、支持向量机、随机森林和梯度提升),以根据声学特征预测认知负荷(“高”与“低”)。分析仅限于正确反应。使用验证数据集在所有广度长度以及四位数广度试验子集中对模型进行评估。通过受试者工作特征曲线(ROC)分析检查分类器的判别能力。

结果

参与者在8个项目中的平均广度为6.34(标准差=1.38)。梯度提升分类器在测试数据上提供了性能最佳的模型(曲线下面积[AUC]=0.98),并且在验证数据集上对认知负荷显示出出色的判别能力,在所有广度长度上(AUC=0.99)以及仅针对四位数话语(AUC=0.95)。

讨论

脑力劳动的敏感生物标志物可以从远程管理的言语认知测试中的声音声学特征中得出。现在需要研究这种生物标志物在提高认知测试对细微病理的敏感性方面的应用情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02db/10435853/f542e2b731a4/frai-06-1171652-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验