Martín Juan F
Departamento de Biología Molecular, Área de Microbiología, Universidad de León, León, Spain.
Front Cell Dev Biol. 2023 Aug 3;11:1225774. doi: 10.3389/fcell.2023.1225774. eCollection 2023.
Phosphate and calcium ions are nutrients that play key roles in growth, differentiation and the production of bioactive secondary metabolites in filamentous fungi. Phosphate concentration regulates the biosynthesis of hundreds of fungal metabolites. The central mechanisms of phosphate transport and regulation, mediated by the master Pho4 transcriptional factor are known, but many aspects of the control of gene expression need further research. High ATP concentration in the cells leads to inositol pyrophosphate molecules formation, such as IP3 and IP7, that act as phosphorylation status reporters. Calcium ions are intracellular messengers in eukaryotic organisms and calcium homeostasis follows elaborated patterns in response to different nutritional and environmental factors, including cross-talking with phosphate concentrations. A large part of the intracellular calcium is stored in vacuoles and other organelles forming complexes with polyphosphate. The free cytosolic calcium concentration is maintained by transport from the external medium or by release from the store organelles through calcium permeable transient receptor potential (TRP) ion channels. Calcium ions, particularly the free cytosolic calcium levels, control the biosynthesis of fungal metabolites by two mechanisms, 1) direct interaction of calcium-bound calmodulin with antibiotic synthesizing enzymes, and 2) by the calmodulin-calcineurin signaling cascade. Control of very different secondary metabolites, including pathogenicity determinants, are mediated by calcium through the Crz1 factor. Several interactions between calcium homeostasis and phosphate have been demonstrated in the last decade: 1) The inositol pyrophosphate IP3 triggers the release of calcium ions from internal stores into the cytosol, 2) Expression of the high affinity phosphate transporter Pho89, a Na+/phosphate symporter, is controlled by Crz1. Also, mutants defective in the calcium permeable TRPCa7-like of shown impaired expression of Pho89. This information suggests that CrzA and Pho89 play key roles in the interaction of phosphate and calcium regulatory pathways, 3) Finally, acidocalcisomes organelles have been found in mycorrhiza and in some melanin producing fungi that show similar characteristics as protozoa calcisomes. In these organelles there is a close interaction between orthophosphate, pyrophosphate and polyphosphate and calcium ions that are absorbed in the polyanionic polyphosphate matrix. These advances open new perspectives for the control of fungal metabolism.
磷酸根离子和钙离子是丝状真菌生长、分化及生物活性次生代谢产物合成过程中发挥关键作用的营养物质。磷酸盐浓度调节着数百种真菌代谢产物的生物合成。由主要转录因子Pho4介导的磷酸盐转运和调节的核心机制已为人所知,但基因表达调控的许多方面仍需进一步研究。细胞内高浓度的ATP会导致肌醇焦磷酸分子的形成,如IP3和IP7,它们作为磷酸化状态的报告分子。钙离子是真核生物中的细胞内信使,钙稳态会根据不同的营养和环境因素呈现出复杂的模式,包括与磷酸盐浓度的相互作用。细胞内大部分钙离子储存在液泡和其他细胞器中,并与多磷酸盐形成复合物。游离的胞质钙离子浓度通过从外部介质的转运或通过钙通透性瞬时受体电位(TRP)离子通道从储存细胞器的释放来维持。钙离子,特别是游离的胞质钙离子水平,通过两种机制控制真菌代谢产物的生物合成:1)钙结合的钙调蛋白与抗生素合成酶的直接相互作用;2)通过钙调蛋白-钙神经素信号级联反应。包括致病性决定因素在内的多种不同次生代谢产物的控制是由钙离子通过Crz1因子介导的。在过去十年中,已经证明了钙稳态和磷酸盐之间的几种相互作用:1)肌醇焦磷酸IP3触发钙离子从内部储存库释放到细胞质中;2)高亲和力磷酸盐转运体Pho89(一种Na+/磷酸盐同向转运体)的表达受Crz1控制。此外,在类似TRPCa7的钙通透性方面存在缺陷的突变体显示Pho89的表达受损。这些信息表明CrzA和Pho89在磷酸盐和钙调节途径的相互作用中起关键作用;3)最后,在菌根和一些产生黑色素的真菌中发现了酸钙小体细胞器,它们表现出与原生动物钙小体相似的特征。在这些细胞器中,正磷酸盐、焦磷酸盐和多磷酸盐与吸收在多阴离子多磷酸盐基质中的钙离子之间存在密切的相互作用。这些进展为控制真菌代谢开辟了新的前景。