Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.
Sydney Medical School-Westmead, University of Sydney, Sydney, NSW, Australia.
mBio. 2020 Oct 20;11(5):e01920-20. doi: 10.1128/mBio.01920-20.
In the human-pathogenic fungus , the inositol polyphosphate signaling pathway is critical for virulence. We recently demonstrated the key role of the inositol pyrophosphate IP (isomer 5-PP-IP) in driving fungal virulence; however, the mechanism of action remains elusive. Using genetic and biochemical approaches, and mouse infection models, we show that IP synthesized by Kcs1 regulates fungal virulence by binding to a conserved lysine surface cluster in the SPX domain of Pho81. Pho81 is the cyclin-dependent kinase (CDK) inhibitor of the phosphate signaling (PHO) pathway. We also provide novel mechanistic insight into the role of IP in PHO pathway regulation by demonstrating that IP functions as an intermolecular "glue" to stabilize Pho81 association with Pho85/Pho80 and, hence, promote PHO pathway activation and phosphate acquisition. Blocking IP-Pho81 interaction using site-directed mutagenesis led to a dramatic loss of fungal virulence in a mouse infection model, and the effect was similar to that observed following gene deletion, highlighting the key importance of Pho81 in fungal virulence. Furthermore, our findings provide additional evidence of evolutionary divergence in PHO pathway regulation in fungi by demonstrating that IP isomers have evolved different roles in PHO pathway control in and nonpathogenic yeast. Invasive fungal diseases pose a serious threat to human health globally with >1.5 million deaths occurring annually, 180,000 of which are attributable to the AIDS-related pathogen, Here, we demonstrate that interaction of the inositol pyrophosphate, IP, with the CDK inhibitor protein, Pho81, is instrumental in promoting fungal virulence. IP-Pho81 interaction stabilizes Pho81 association with other CDK complex components to promote PHO pathway activation and phosphate acquisition. Our data demonstrating that blocking IP-Pho81 interaction or preventing Pho81 production leads to a dramatic loss in fungal virulence, coupled with Pho81 having no homologue in humans, highlights Pho81 function as a potential target for the development of urgently needed antifungal drugs.
在人类致病性真菌中,肌醇多磷酸盐信号通路对毒力至关重要。我们最近证明了肌醇焦磷酸盐 IP(异构体 5-PP-IP)在驱动真菌毒力中的关键作用;然而,其作用机制仍不清楚。使用遗传和生化方法以及小鼠感染模型,我们表明由 Kcs1 合成的 IP 通过与 Pho81 的 SPX 结构域中的保守赖氨酸表面簇结合来调节真菌毒力。Pho81 是磷酸盐信号(PHO)途径的细胞周期蛋白依赖性激酶(CDK)抑制剂。我们还通过证明 IP 作为一种分子间“胶”来稳定 Pho81 与 Pho85/Pho80 的结合,从而提供了关于 IP 在 PHO 途径调节中的作用的新的机制见解,并因此促进 PHO 途径的激活和磷酸盐的获取,为 PHO 途径调节中 IP 的作用提供了新的机制见解。使用定点突变阻断 IP-Pho81 相互作用导致小鼠感染模型中真菌毒力的急剧丧失,其作用类似于基因缺失观察到的作用,突出了 Pho81 在真菌毒力中的关键重要性。此外,我们的研究结果通过证明 IP 异构体在 PHO 途径控制中具有不同的作用,为真菌中 PHO 途径调节的进化分歧提供了额外的证据,在和非致病性酵母中。侵袭性真菌病对全球人类健康构成严重威胁,每年有超过 150 万人死亡,其中 18 万人归因于与艾滋病相关的病原体。在这里,我们证明肌醇焦磷酸盐 IP 与 CDK 抑制剂蛋白 Pho81 的相互作用对于促进真菌毒力至关重要。IP-Pho81 相互作用稳定 Pho81 与其他 CDK 复合物成分的结合,以促进 PHO 途径的激活和磷酸盐的获取。我们的数据表明,阻断 IP-Pho81 相互作用或阻止 Pho81 产生会导致真菌毒力急剧丧失,加上 Pho81 在人类中没有同源物,突出了 Pho81 作为开发急需的抗真菌药物的潜在靶标。