Nakshatrala Kalyana B, Adhikari Kripa, Kumar Sandeep Rajendra, Patrick Jason F
Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204, USA.
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
PNAS Nexus. 2023 Aug 14;2(8):pgad266. doi: 10.1093/pnasnexus/pgad266. eCollection 2023 Aug.
Modulating temperature fields is indispensable for advancing modern technologies: space probes, electronic packing, and implantable medical devices, to name a few. Bio-inspired thermal regulation achieved via fluid flow within a network of embedded vesicles is notably desirable for slender synthetic material systems. This far-reaching study-availing theory, numerics, and experiments-reveals a counter-intuitive yet fundamental property of vascular-based fluid-flow-engendered thermal regulation. For such thin systems, the mean surface temperature and the outlet temperature-consequently, the heat extracted by the flowing fluid (coolant)-are invariant under flow reversal (i.e. swapping the inlet and outlet). Despite markedly different temperature fields under flow reversal, our newfound invariance-a discovery-holds for anisotropic thermal conductivity, any inlet and ambient temperatures, transient and steady-state responses, irregular domains, and arbitrary internal vascular topologies, including those with branching. The reported configuration-independent result benefits thermal regulation designers. For instance, the flexibility in the coolant's inlet location eases coordination challenges between electronics and various delivery systems in microfluidic devices without compromising performance (e.g. soft implantable coolers for pain management). Last but not least, the invariance offers an innovative way to verify computer codes, especially when analytical solutions are unavailable for intricate domain and vascular configurations.
调节温度场对于推动现代技术发展至关重要,比如太空探测器、电子封装以及可植入医疗设备等等。对于细长的合成材料系统而言,通过嵌入囊泡网络内的流体流动实现的仿生热调节尤为可取。这项意义深远的研究——综合运用理论、数值计算和实验——揭示了基于血管的流体流动所产生的热调节的一个违反直觉但却基本的特性。对于此类薄系统,平均表面温度和出口温度——进而,流动流体(冷却剂)提取的热量——在流动反向(即交换入口和出口)时保持不变。尽管在流动反向时温度场明显不同,但我们新发现的不变性——一项发现——适用于各向异性热导率、任何入口和环境温度、瞬态和稳态响应、不规则域以及任意内部血管拓扑结构,包括那些具有分支的结构。所报道的与配置无关的结果对热调节设计人员有益。例如,冷却剂入口位置的灵活性缓解了微流体设备中电子设备与各种输送系统之间的协调难题,同时又不影响性能(例如用于疼痛管理的软性可植入冷却器)。最后但同样重要的是,这种不变性提供了一种验证计算机代码的创新方法,尤其是当复杂的域和血管配置没有解析解时。