Garg Mayank, Aw Jia En, Zhang Xiang, Centellas Polette J, Dean Leon M, Lloyd Evan M, Robertson Ian D, Liu Yiqiao, Yourdkhani Mostafa, Moore Jeffrey S, Geubelle Philippe H, Sottos Nancy R
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Departments of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Nat Commun. 2021 May 14;12(1):2836. doi: 10.1038/s41467-021-23054-7.
Bioinspired vascular networks transport heat and mass in hydrogels, microfluidic devices, self-healing and self-cooling structures, filters, and flow batteries. Lengthy, multistep fabrication processes involving solvents, external heat, and vacuum hinder large-scale application of vascular networks in structural materials. Here, we report the rapid (seconds to minutes), scalable, and synchronized fabrication of vascular thermosets and fiber-reinforced composites under ambient conditions. The exothermic frontal polymerization (FP) of a liquid or gelled resin facilitates coordinated depolymerization of an embedded sacrificial template to create host structures with high-fidelity interconnected microchannels. The chemical energy released during matrix polymerization eliminates the need for a sustained external heat source and greatly reduces external energy consumption for processing. Programming the rate of depolymerization of the sacrificial thermoplastic to match the kinetics of FP has the potential to significantly expedite the fabrication of vascular structures with extended lifetimes, microreactors, and imaging phantoms for understanding capillary flow in biological systems.
受生物启发的血管网络可在水凝胶、微流控装置、自修复和自冷却结构、过滤器及液流电池中传输热量和物质。涉及溶剂、外部加热和真空的冗长多步制造工艺阻碍了血管网络在结构材料中的大规模应用。在此,我们报告了在环境条件下快速(数秒至数分钟)、可扩展且同步制造血管热固性材料和纤维增强复合材料的方法。液体或凝胶状树脂的放热前沿聚合(FP)促进了嵌入式牺牲模板的协同解聚,从而创建具有高保真互连微通道的主体结构。基体聚合过程中释放的化学能消除了对持续外部热源的需求,并大大降低了加工过程中的外部能源消耗。对牺牲热塑性塑料的解聚速率进行编程,使其与FP的动力学相匹配,有可能显著加快具有更长使用寿命的血管结构、微反应器以及用于理解生物系统中毛细血管流动的成像体模的制造。