Suppr超能文献

一种基于语义分割和深度学习的用于血红蛋白监测的新型、可行且便捷的方法。

A new, feasible, and convenient method based on semantic segmentation and deep learning for hemoglobin monitoring.

作者信息

Hu Xiao-Yan, Li Yu-Jie, Shu Xin, Song Ai-Lin, Liang Hao, Sun Yi-Zhu, Wu Xian-Feng, Li Yong-Shuai, Tan Li-Fang, Yang Zhi-Yong, Yang Chun-Yong, Xu Lin-Quan, Chen Yu-Wen, Yi Bin

机构信息

Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, China.

出版信息

Front Med (Lausanne). 2023 Aug 3;10:1151996. doi: 10.3389/fmed.2023.1151996. eCollection 2023.

Abstract

OBJECTIVE

Non-invasive methods for hemoglobin (Hb) monitoring can provide additional and relatively precise information between invasive measurements of Hb to help doctors' decision-making. We aimed to develop a new method for Hb monitoring based on mask R-CNN and MobileNetV3 with eye images as input.

METHODS

Surgical patients from our center were enrolled. After image acquisition and pre-processing, the eye images, the manually selected palpebral conjunctiva, and features extracted, respectively, from the two kinds of images were used as inputs. A combination of feature engineering and regression, solely MobileNetV3, and a combination of mask R-CNN and MobileNetV3 were applied for model development. The model's performance was evaluated using metrics such as R, explained variance score (EVS), and mean absolute error (MAE).

RESULTS

A total of 1,065 original images were analyzed. The model's performance based on the combination of mask R-CNN and MobileNetV3 using the eye images achieved an R, EVS, and MAE of 0.503 (95% CI, 0.499-0.507), 0.518 (95% CI, 0.515-0.522) and 1.6 g/dL (95% CI, 1.6-1.6 g/dL), which was similar to that based on MobileNetV3 using the manually selected palpebral conjunctiva images (R: 0.509, EVS:0.516, MAE:1.6 g/dL).

CONCLUSION

We developed a new and automatic method for Hb monitoring to help medical staffs' decision-making with high efficiency, especially in cases of disaster rescue, casualty transport, and so on.

摘要

目的

血红蛋白(Hb)监测的非侵入性方法可以在Hb的侵入性测量之间提供额外且相对精确的信息,以帮助医生进行决策。我们旨在开发一种基于掩码区域卷积神经网络(Mask R-CNN)和MobileNetV3的新方法,以眼部图像作为输入来监测Hb。

方法

招募了来自我们中心的外科手术患者。在图像采集和预处理之后,眼部图像、手动选择的睑结膜以及分别从这两种图像中提取的特征被用作输入。应用特征工程与回归相结合、仅使用MobileNetV3以及Mask R-CNN与MobileNetV3相结合的方法进行模型开发。使用决定系数(R)、解释方差得分(EVS)和平均绝对误差(MAE)等指标评估模型性能。

结果

共分析了1065张原始图像。基于眼部图像使用Mask R-CNN和MobileNetV3相结合的模型性能,其R、EVS和MAE分别为0.503(95%置信区间,0.499 - 0.507)、0.518(95%置信区间,0.515 - 0.522)和1.6 g/dL(95%置信区间,1.6 - 1.6 g/dL),这与基于手动选择的睑结膜图像使用MobileNetV3的模型性能相似(R:0.509,EVS:0.516,MAE:1.6 g/dL)。

结论

我们开发了一种用于Hb监测的新型自动方法,以高效帮助医护人员进行决策,特别是在灾难救援、伤员转运等情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78de/10435289/e3c90225a1cb/fmed-10-1151996-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验