Suppr超能文献

在早期果蝇胚胎中,非相干前馈环驱动 ERK 依赖性模式形成的动力学。

Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early Drosophila embryo.

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA.

出版信息

Development. 2023 Sep 1;150(17). doi: 10.1242/dev.201818.

Abstract

Positional information in development often manifests as stripes of gene expression, but how stripes form remains incompletely understood. Here, we use optogenetics and live-cell biosensors to investigate the posterior brachyenteron (byn) stripe in early Drosophila embryos. This stripe depends on interpretation of an upstream ERK activity gradient and the expression of two target genes, tailless (tll) and huckebein (hkb), that exert antagonistic control over byn. We find that high or low doses of ERK signaling produce transient or sustained byn expression, respectively. Although tll transcription is always rapidly induced, hkb converts graded ERK inputs into a variable time delay. Nuclei thus interpret ERK amplitude through the relative timing of tll and hkb transcription. Antagonistic regulatory paths acting on different timescales are hallmarks of an incoherent feedforward loop, which is sufficient to explain byn dynamics and adds temporal complexity to the steady-state model of byn stripe formation. We further show that 'blurring' of an all-or-none stimulus through intracellular diffusion non-locally produces a byn stripe. Overall, we provide a blueprint for using optogenetics to dissect developmental signal interpretation in space and time.

摘要

发育过程中的位置信息通常表现为基因表达的条纹,但条纹是如何形成的仍不完全清楚。在这里,我们使用光遗传学和活细胞生物传感器来研究早期果蝇胚胎中的后短肠(byn)条纹。这条条纹依赖于对上游 ERK 活性梯度的解释以及两个靶基因 tailless(tll)和 huckebein(hkb)的表达,它们对 byn 施加拮抗控制。我们发现,高或低剂量的 ERK 信号分别产生短暂或持续的 byn 表达。尽管 tll 转录总是迅速诱导,但 hkb 将梯度 ERK 输入转化为可变的时间延迟。因此,细胞核通过 tll 和 hkb 转录的相对时间来解释 ERK 幅度。作用于不同时间尺度的拮抗调节路径是前馈回路不连贯的标志,它足以解释 byn 动力学,并为 byn 条纹形成的稳态模型增加时间复杂性。我们进一步表明,通过细胞内扩散非局部地模糊全有或全无刺激会产生 byn 条纹。总的来说,我们提供了一个使用光遗传学在空间和时间上解析发育信号解释的蓝图。

相似文献

2
Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early embryo.
bioRxiv. 2023 Mar 10:2023.03.09.531972. doi: 10.1101/2023.03.09.531972.
3
Expression, function and regulation of Brachyenteron in the short germband insect Tribolium castaneum.
Dev Genes Evol. 2008 Apr;218(3-4):169-79. doi: 10.1007/s00427-008-0210-7. Epub 2008 Apr 8.
4
Drosophila brachyenteron regulates gene activity and morphogenesis in the gut.
Development. 1996 Dec;122(12):3707-18. doi: 10.1242/dev.122.12.3707.
7
Temporal dynamics of pair-rule stripes in living embryos.
Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8376-8381. doi: 10.1073/pnas.1810430115. Epub 2018 Jul 30.
8
Global repression by tailless during segmentation.
Dev Biol. 2024 Jan;505:11-23. doi: 10.1016/j.ydbio.2023.09.014. Epub 2023 Oct 24.
9
Repression activity of Tailless on h 1 and eve 1 pair-rule stripes.
Mech Dev. 2017 Apr;144(Pt B):156-162. doi: 10.1016/j.mod.2016.10.002. Epub 2016 Oct 20.

引用本文的文献

1
A live-cell biosensor of in vivo receptor tyrosine kinase activity reveals feedback regulation of a developmental gradient.
Cell Rep. 2025 Jul 22;44(7):115930. doi: 10.1016/j.celrep.2025.115930. Epub 2025 Jun 27.
2
Optogenetic control of Nodal signaling patterns.
Development. 2025 May 1;152(9). doi: 10.1242/dev.204506.
3
measurements of receptor tyrosine kinase activity reveal feedback regulation of a developmental gradient.
bioRxiv. 2025 Jan 7:2025.01.06.631605. doi: 10.1101/2025.01.06.631605.
4
Optogenetic control of Nodal signaling patterns.
bioRxiv. 2024 Apr 12:2024.04.11.588875. doi: 10.1101/2024.04.11.588875.

本文引用的文献

1
Precisely timed regulation of enhancer activity defines the binary expression pattern of Fushi tarazu in the Drosophila embryo.
Curr Biol. 2023 Jul 24;33(14):2839-2850.e7. doi: 10.1016/j.cub.2023.04.005. Epub 2023 Apr 27.
2
Minimal synthetic enhancers reveal control of the probability of transcriptional engagement and its timing by a morphogen gradient.
Cell Syst. 2023 Mar 15;14(3):220-236.e3. doi: 10.1016/j.cels.2022.12.008. Epub 2023 Jan 24.
3
Nodal signaling establishes a competency window for stochastic cell fate switching.
Dev Cell. 2022 Dec 5;57(23):2604-2622.e5. doi: 10.1016/j.devcel.2022.11.008.
4
ERK1/2 signalling dynamics promote neural differentiation by regulating chromatin accessibility and the polycomb repressive complex.
PLoS Biol. 2022 Dec 1;20(12):e3000221. doi: 10.1371/journal.pbio.3000221. eCollection 2022 Dec.
5
Sonic hedgehog is not a limb morphogen but acts as a trigger to specify all digits in mice.
Dev Cell. 2022 Sep 12;57(17):2048-2062.e4. doi: 10.1016/j.devcel.2022.07.016. Epub 2022 Aug 16.
6
Putting in the Erk: Growth factor signaling and mesoderm morphogenesis.
Curr Top Dev Biol. 2022;149:263-310. doi: 10.1016/bs.ctdb.2022.02.007. Epub 2022 Mar 4.
7
Dynamics of endoderm specification.
Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2112892119. doi: 10.1073/pnas.2112892119. Epub 2022 Apr 11.
8
Optogenetic control of the Bicoid morphogen reveals fast and slow modes of gap gene regulation.
Cell Rep. 2022 Mar 22;38(12):110543. doi: 10.1016/j.celrep.2022.110543.
9
Generation and timing of graded responses to morphogen gradients.
Development. 2021 Dec 15;148(24). doi: 10.1242/dev.199991. Epub 2021 Dec 17.
10
Capicua is a fast-acting transcriptional brake.
Curr Biol. 2021 Aug 23;31(16):3639-3647.e5. doi: 10.1016/j.cub.2021.05.061. Epub 2021 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验