Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
PLoS One. 2023 Aug 21;18(8):e0290307. doi: 10.1371/journal.pone.0290307. eCollection 2023.
The human microbiome plays a crucial role in human health and is associated with a number of human diseases. Determining microbiome functional roles in human diseases remains a biological challenge due to the high dimensionality of metagenome gene features. However, existing models were limited in providing biological interpretability, where the functional role of microbes in human diseases is unexplored. Here we propose to utilize a neural network-based model incorporating Gene Ontology (GO) relationship network to discover the microbe functionality in human diseases. We use four benchmark datasets, including diabetes, liver cirrhosis, inflammatory bowel disease, and colorectal cancer, to explore the microbe functionality in the human diseases. Our model discovered and visualized the novel candidates' important microbiome genes and their functions by calculating the important score of each gene and GO term in the network. Furthermore, we demonstrate that our model achieves a competitive performance in predicting the disease by comparison with other non-Gene Ontology informed models. The discovered candidates' important microbiome genes and their functions provide novel insights into microbe functional contribution.
人类微生物组在人类健康中起着至关重要的作用,与许多人类疾病有关。由于宏基因组基因特征的高维度,确定微生物组在人类疾病中的功能作用仍然是一个生物学上的挑战。然而,现有的模型在提供生物学可解释性方面存在局限性,即微生物在人类疾病中的功能作用尚未得到探索。在这里,我们提出利用基于神经网络的模型,结合基因本体论(GO)关系网络,来发现微生物在人类疾病中的功能。我们使用了包括糖尿病、肝硬化、炎症性肠病和结直肠癌在内的四个基准数据集,来探索人类疾病中的微生物功能。我们的模型通过计算网络中每个基因和 GO 术语的重要得分,发现并可视化了新型候选者的重要微生物组基因及其功能。此外,我们通过与其他非基因本体论信息模型的比较,证明了我们的模型在预测疾病方面具有竞争力的表现。所发现的候选者的重要微生物组基因及其功能为微生物功能贡献提供了新的见解。