Suppr超能文献

用于高效编码和特征提取的自适应电路的规范和机制模型。

Normative and mechanistic model of an adaptive circuit for efficient encoding and feature extraction.

机构信息

Center for Computation Neuroscience, Flatiron Institute, New York, NY 10010.

Department of Neurology, New York University School of Medicine, New York, NY 10016.

出版信息

Proc Natl Acad Sci U S A. 2023 Jul 18;120(29):e2117484120. doi: 10.1073/pnas.2117484120. Epub 2023 Jul 10.

Abstract

One major question in neuroscience is how to relate connectomes to neural activity, circuit function, and learning. We offer an answer in the peripheral olfactory circuit of the larva, composed of olfactory receptor neurons (ORNs) connected through feedback loops with interconnected inhibitory local neurons (LNs). We combine structural and activity data and, using a holistic normative framework based on similarity-matching, we formulate biologically plausible mechanistic models of the circuit. In particular, we consider a linear circuit model, for which we derive an exact theoretical solution, and a nonnegative circuit model, which we examine through simulations. The latter largely predicts the ORN [Formula: see text] LN synaptic weights found in the connectome and demonstrates that they reflect correlations in ORN activity patterns. Furthermore, this model accounts for the relationship between ORN [Formula: see text] LN and LN-LN synaptic counts and the emergence of different LN types. Functionally, we propose that LNs encode soft cluster memberships of ORN activity, and partially whiten and normalize the stimulus representations in ORNs through inhibitory feedback. Such a synaptic organization could, in principle, autonomously arise through Hebbian plasticity and would allow the circuit to adapt to different environments in an unsupervised manner. We thus uncover a general and potent circuit motif that can learn and extract significant input features and render stimulus representations more efficient. Finally, our study provides a unified framework for relating structure, activity, function, and learning in neural circuits and supports the conjecture that similarity-matching shapes the transformation of neural representations.

摘要

神经科学的一个主要问题是如何将连接组学与神经活动、电路功能和学习联系起来。我们在幼虫的外周嗅觉电路中提供了一个答案,该电路由通过反馈回路与相互连接的抑制性局部神经元 (LN) 相连的嗅觉受体神经元 (ORN) 组成。我们结合结构和活动数据,并使用基于相似性匹配的整体规范框架,构建了该电路的生物学上合理的机制模型。特别是,我们考虑了一个线性电路模型,为此我们推导出了一个精确的理论解,以及一个非负电路模型,我们通过模拟来研究该模型。后者在很大程度上预测了连接组中发现的 ORN-LN 突触权重,并表明它们反映了 ORN 活动模式中的相关性。此外,该模型解释了 ORN-LN 和 LN-LN 突触计数之间的关系,以及不同 LN 类型的出现。从功能上讲,我们提出 LN 编码 ORN 活动的软聚类成员,通过抑制性反馈对 ORN 中的刺激表示进行部分白化和归一化。这种突触组织原则上可以通过赫布可塑性自主产生,并允许电路以无监督的方式适应不同的环境。因此,我们揭示了一种普遍而有效的电路模式,该模式可以学习和提取重要的输入特征,并使刺激表示更有效。最后,我们的研究为神经电路中的结构、活动、功能和学习提供了一个统一的框架,并支持相似性匹配塑造神经表示变换的猜想。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b2/10629579/c4479393fcf4/pnas.2117484120fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验