Niihori Marika, Földes Tamás, Readman Charlie A, Arul Rakesh, Grys David-Benjamin, Nijs Bart de, Rosta Edina, Baumberg Jeremy J
Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK.
Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
Small. 2023 Nov;19(48):e2302531. doi: 10.1002/smll.202302531. Epub 2023 Aug 21.
Sensing of neurotransmitters (NTs) down to nm concentrations is demonstrated by utilizing self-assembled monolayers of plasmonic 60 nm Au nanoparticles in close-packed arrays immobilized onto glass substrates. Multiplicative surface-enhanced Raman spectroscopy enhancements are achieved by integrating Fe(III) sensitizers into the precisely-defined <1 nm nanogaps, to target dopamine (DA) sensing. The transparent glass substrates allow for efficient access from both sides of the monolayer aggregate films by fluid and light, allowing repeated sensing in different analytes. Repeated reusability after analyte sensing is shown through oxygen plasma cleaning protocols, which restore pristine conditions for the nanogaps. Examining binding competition in multiplexed sensing of two catecholamine NTs, DA and epinephrine, reveals their bidentate binding and their interactions. These systems are promising for widespread microfluidic integration enabling a wide range of continuous biofluid monitoring for applications in precision health.
通过利用自组装单层紧密排列的60纳米等离子体金纳米颗粒固定在玻璃基板上,实现了对低至纳米浓度神经递质(NTs)的传感。通过将铁(III)敏化剂整合到精确限定的小于1纳米的纳米间隙中,实现了倍增表面增强拉曼光谱增强,以用于多巴胺(DA)传感。透明玻璃基板允许流体和光从单层聚集膜的两侧有效进入,从而允许在不同分析物中进行重复传感。通过氧等离子体清洗方案展示了分析物传感后的重复可重用性,该方案可恢复纳米间隙的原始条件。研究两种儿茶酚胺神经递质(DA和肾上腺素)的多重传感中的结合竞争,揭示了它们的双齿结合及其相互作用。这些系统有望广泛应用于微流体集成,实现广泛的连续生物流体监测,以用于精准健康领域的应用。