Suppr超能文献

CoTrFuse:一种融合 CNN 和 Transformer 的用于医学图像分割的新框架。

CoTrFuse: a novel framework by fusing CNN and transformer for medical image segmentation.

机构信息

College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, People's Republic of China.

Fujian Key Lab of Medical Instrumentation & Pharmaceutical Technology, Fuzhou University, Fuzhou 350116, People's Republic of China.

出版信息

Phys Med Biol. 2023 Aug 22;68(17). doi: 10.1088/1361-6560/acede8.

Abstract

Medical image segmentation is a crucial and intricate process in medical image processing and analysis. With the advancements in artificial intelligence, deep learning techniques have been widely used in recent years for medical image segmentation. One such technique is the U-Net framework based on the U-shaped convolutional neural networks (CNN) and its variants. However, these methods have limitations in simultaneously capturing both the global and the remote semantic information due to the restricted receptive domain caused by the convolution operation's intrinsic features. Transformers are attention-based models with excellent global modeling capabilities, but their ability to acquire local information is limited. To address this, we propose a network that combines the strengths of both CNN and Transformer, called CoTrFuse. The proposed CoTrFuse network uses EfficientNet and Swin Transformer as dual encoders. The Swin Transformer and CNN Fusion module are combined to fuse the features of both branches before the skip connection structure. We evaluated the proposed network on two datasets: the ISIC-2017 challenge dataset and the COVID-QU-Ex dataset. Our experimental results demonstrate that the proposed CoTrFuse outperforms several state-of-the-art segmentation methods, indicating its superiority in medical image segmentation. The codes are available athttps://github.com/BinYCn/CoTrFuse.

摘要

医学图像分割是医学图像处理和分析中的一个关键且复杂的过程。近年来,随着人工智能的发展,深度学习技术已广泛应用于医学图像分割。基于 U 形卷积神经网络(CNN)及其变体的 U-Net 框架就是一种这样的技术。然而,由于卷积操作的固有特征导致的受限感受野,这些方法在同时捕捉全局和远程语义信息方面存在局限性。Transformer 是一种基于注意力的模型,具有出色的全局建模能力,但获取局部信息的能力有限。为了解决这个问题,我们提出了一种结合 CNN 和 Transformer 优势的网络,称为 CoTrFuse。所提出的 CoTrFuse 网络使用 EfficientNet 和 Swin Transformer 作为双编码器。在跳过连接结构之前,将 Swin Transformer 和 CNN 融合模块结合起来融合两个分支的特征。我们在两个数据集上评估了所提出的网络:ISIC-2017 挑战赛数据集和 COVID-QU-Ex 数据集。我们的实验结果表明,所提出的 CoTrFuse 优于几种最先进的分割方法,表明其在医学图像分割中的优越性。代码可在 https://github.com/BinYCn/CoTrFuse 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验