Liu Wei, He Yuxiao, Man Tiantian, Zhu Fulin, Chen Qiaoliang, Huang Yaqi, Feng Xuyu, Li Bin, Wan Ying, He Jian, Deng Shengyuan
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
Chem Biomed Imaging. 2025 Apr 8;3(8):522-533. doi: 10.1021/cbmi.4c00102. eCollection 2025 Aug 25.
Accurate and automated segmentation of 3D biomedical images is a sophisticated imperative in clinical diagnosis, imaging-guided surgery, and prognosis judgment. Although the burgeoning of deep learning technologies has fostered smart segmentators, the successive and simultaneous garnering global and local features still remains challenging, which is essential for an exact and efficient imageological assay. To this end, a segmentation solution dubbed the mixed parallel shunted transformer (MPSTrans) is developed here, highlighting 3D-MPST blocks in a U-form framework. It enabled not only comprehensive characteristic capture and multiscale slice synchronization but also deep supervision in the decoder to facilitate the fetching of hierarchical representations. Performing on an unpublished colon cancer data set, this model achieved an impressive increase in dice similarity coefficient (DSC) and a 1.718 mm decease in Hausdorff distance at 95% (HD95), alongside a substantial shrink of computational load of 56.7% in giga floating-point operations per second (GFLOPs). Meanwhile, MPSTrans outperforms other mainstream methods (Swin UNETR, UNETR, nnU-Net, PHTrans, and 3D U-Net) on three public multiorgan (aorta, gallbladder, kidney, liver, pancreas, spleen, stomach, etc.) and multimodal (CT, PET-CT, and MRI) data sets of medical segmentation decathlon (MSD) brain tumor, multiatlas labeling beyond cranial vault (BCV), and automated cardiac diagnosis challenge (ACDC), accentuating its adaptability. These results reflect the potential of MPSTrans to advance the state-of-the-art in biomedical imaging analysis, which would offer a robust tool for enhanced diagnostic capacity.
三维生物医学图像的准确自动分割在临床诊断、影像引导手术和预后判断中是一项复杂的必要任务。尽管深度学习技术的蓬勃发展催生了智能分割器,但连续且同时获取全局和局部特征仍然具有挑战性,而这对于精确高效的影像学分析至关重要。为此,本文开发了一种名为混合并行分流变压器(MPSTrans)的分割解决方案,在U型框架中突出3D-MPST模块。它不仅能够全面捕捉特征和进行多尺度切片同步,还能在解码器中进行深度监督,以促进分层表示的获取。在一个未发表的结肠癌数据集上进行测试时,该模型的骰子相似系数(DSC)显著提高,95%豪斯多夫距离(HD95)减少了1.718毫米,同时每秒千兆浮点运算次数(GFLOPs)的计算量大幅减少了56.7%。此外,在医学分割十项全能(MSD)脑肿瘤、颅外多图谱标注(BCV)和自动心脏诊断挑战(ACDC)的三个公共多器官(主动脉、胆囊、肾脏、肝脏、胰腺、脾脏、胃等)和多模态(CT、PET-CT和MRI)数据集上,MPSTrans优于其他主流方法(Swin UNETR、UNETR、nnU-Net、PHTrans和3D U-Net),突出了其适应性。这些结果反映了MPSTrans在推进生物医学成像分析方面的潜力,这将为提高诊断能力提供一个强大的工具。
Chem Biomed Imaging. 2025-4-8
BMC Med Imaging. 2025-8-13
Phys Med Biol. 2024-5-27
Sci Rep. 2024-10-28
Chem Biomed Imaging. 2024-7-31
BMC Med Imaging. 2024-9-16
Med Image Anal. 2024-12
IEEE Trans Med Imaging. 2024-9
IEEE Trans Med Imaging. 2024-6
Chem Biomed Imaging. 2023-11-21
Nat Commun. 2024-1-22
IEEE Trans Image Process. 2024