文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于并行多尺度Transformer-CNN聚合网络的高效3D生物医学图像分割

Efficient 3D Biomedical Image Segmentation by Parallelly Multiscale Transformer-CNN Aggregation Network.

作者信息

Liu Wei, He Yuxiao, Man Tiantian, Zhu Fulin, Chen Qiaoliang, Huang Yaqi, Feng Xuyu, Li Bin, Wan Ying, He Jian, Deng Shengyuan

机构信息

School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.

出版信息

Chem Biomed Imaging. 2025 Apr 8;3(8):522-533. doi: 10.1021/cbmi.4c00102. eCollection 2025 Aug 25.


DOI:10.1021/cbmi.4c00102
PMID:40881002
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12381746/
Abstract

Accurate and automated segmentation of 3D biomedical images is a sophisticated imperative in clinical diagnosis, imaging-guided surgery, and prognosis judgment. Although the burgeoning of deep learning technologies has fostered smart segmentators, the successive and simultaneous garnering global and local features still remains challenging, which is essential for an exact and efficient imageological assay. To this end, a segmentation solution dubbed the mixed parallel shunted transformer (MPSTrans) is developed here, highlighting 3D-MPST blocks in a U-form framework. It enabled not only comprehensive characteristic capture and multiscale slice synchronization but also deep supervision in the decoder to facilitate the fetching of hierarchical representations. Performing on an unpublished colon cancer data set, this model achieved an impressive increase in dice similarity coefficient (DSC) and a 1.718 mm decease in Hausdorff distance at 95% (HD95), alongside a substantial shrink of computational load of 56.7% in giga floating-point operations per second (GFLOPs). Meanwhile, MPSTrans outperforms other mainstream methods (Swin UNETR, UNETR, nnU-Net, PHTrans, and 3D U-Net) on three public multiorgan (aorta, gallbladder, kidney, liver, pancreas, spleen, stomach, etc.) and multimodal (CT, PET-CT, and MRI) data sets of medical segmentation decathlon (MSD) brain tumor, multiatlas labeling beyond cranial vault (BCV), and automated cardiac diagnosis challenge (ACDC), accentuating its adaptability. These results reflect the potential of MPSTrans to advance the state-of-the-art in biomedical imaging analysis, which would offer a robust tool for enhanced diagnostic capacity.

摘要

三维生物医学图像的准确自动分割在临床诊断、影像引导手术和预后判断中是一项复杂的必要任务。尽管深度学习技术的蓬勃发展催生了智能分割器,但连续且同时获取全局和局部特征仍然具有挑战性,而这对于精确高效的影像学分析至关重要。为此,本文开发了一种名为混合并行分流变压器(MPSTrans)的分割解决方案,在U型框架中突出3D-MPST模块。它不仅能够全面捕捉特征和进行多尺度切片同步,还能在解码器中进行深度监督,以促进分层表示的获取。在一个未发表的结肠癌数据集上进行测试时,该模型的骰子相似系数(DSC)显著提高,95%豪斯多夫距离(HD95)减少了1.718毫米,同时每秒千兆浮点运算次数(GFLOPs)的计算量大幅减少了56.7%。此外,在医学分割十项全能(MSD)脑肿瘤、颅外多图谱标注(BCV)和自动心脏诊断挑战(ACDC)的三个公共多器官(主动脉、胆囊、肾脏、肝脏、胰腺、脾脏、胃等)和多模态(CT、PET-CT和MRI)数据集上,MPSTrans优于其他主流方法(Swin UNETR、UNETR、nnU-Net、PHTrans和3D U-Net),突出了其适应性。这些结果反映了MPSTrans在推进生物医学成像分析方面的潜力,这将为提高诊断能力提供一个强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/380b45f22c4b/im4c00102_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/5d138f2a6761/im4c00102_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/375c990cb4eb/im4c00102_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/34442ac827b9/im4c00102_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/f074cc6e81bf/im4c00102_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/1f30801f4f69/im4c00102_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/f86b68fade2c/im4c00102_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/380b45f22c4b/im4c00102_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/5d138f2a6761/im4c00102_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/375c990cb4eb/im4c00102_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/34442ac827b9/im4c00102_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/f074cc6e81bf/im4c00102_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/1f30801f4f69/im4c00102_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/f86b68fade2c/im4c00102_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d6/12381746/380b45f22c4b/im4c00102_0007.jpg

相似文献

[1]
Efficient 3D Biomedical Image Segmentation by Parallelly Multiscale Transformer-CNN Aggregation Network.

Chem Biomed Imaging. 2025-4-8

[2]
Large-scale convolutional neural network for clinical target and multi-organ segmentation in gynecologic brachytherapy via multi-stage learning.

Med Phys. 2025-8

[3]
Multi-level channel-spatial attention and light-weight scale-fusion network (MCSLF-Net): multi-level channel-spatial attention and light-weight scale-fusion transformer for 3D brain tumor segmentation.

Quant Imaging Med Surg. 2025-7-1

[4]
Comprehensive Segmentation of Gray Matter Structures on T1-Weighted Brain MRI: A Comparative Study of Convolutional Neural Network, Convolutional Neural Network Hybrid-Transformer or -Mamba Architectures.

AJNR Am J Neuroradiol. 2025-4-2

[5]
ES-UNet: efficient 3D medical image segmentation with enhanced skip connections in 3D UNet.

BMC Med Imaging. 2025-8-13

[6]
SADSNet: A robust 3D synchronous segmentation network for liver and liver tumors based on spatial attention mechanism and deep supervision.

J Xray Sci Technol. 2024

[7]
Adaptive cascaded transformer U-Net for MRI brain tumor segmentation.

Phys Med Biol. 2024-5-27

[8]
Open-Source Manually Annotated Vocal Tract Database for Automatic Segmentation from 3D MRI Using Deep Learning: Benchmarking 2D and 3D Convolutional and Transformer Networks.

J Voice. 2025-3-5

[9]
A CNN-transformer-based hybrid U-shape model with long-range relay for esophagus 3D CT image gross tumor volume segmentation.

Med Phys. 2025-7

[10]
Diffeomorphic transformer-based abdomen MRI-CT deformable image registration.

Med Phys. 2024-9

本文引用的文献

[1]
Medical image segmentation with UNet-based multi-scale context fusion.

Sci Rep. 2024-10-28

[2]
Cervical Cancer Tissue Analysis Using Photothermal Midinfrared Spectroscopic Imaging.

Chem Biomed Imaging. 2024-7-31

[3]
Medical image analysis using improved SAM-Med2D: segmentation and classification perspectives.

BMC Med Imaging. 2024-9-16

[4]
3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation.

Med Image Anal. 2024-12

[5]
UNETR++: Delving Into Efficient and Accurate 3D Medical Image Segmentation.

IEEE Trans Med Imaging. 2024-9

[6]
ScribFormer: Transformer Makes CNN Work Better for Scribble-Based Medical Image Segmentation.

IEEE Trans Med Imaging. 2024-6

[7]
Hybrid CNN-Transformer Network With Circular Feature Interaction for Acute Ischemic Stroke Lesion Segmentation on Non-Contrast CT Scans.

IEEE Trans Med Imaging. 2024-6

[8]
Cancer Brachytherapy at the Nanoscale: An Emerging Paradigm.

Chem Biomed Imaging. 2023-11-21

[9]
Segment anything in medical images.

Nat Commun. 2024-1-22

[10]
Mind the Gap: Learning Modality-Agnostic Representations With a Cross-Modality UNet.

IEEE Trans Image Process. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索