State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science; Institutes of Brain Science; and.
Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
JCI Insight. 2023 Aug 22;8(16):e168919. doi: 10.1172/jci.insight.168919.
Autophagy is a promising target for promoting neural regeneration, which is essential for sensorimotor recovery following traumatic brain injury (TBI). Whether neuronal heat shock protein B2 (HSPB2), a small molecular heat shock protein, reduces injury and promotes recovery following TBI remains unclear. In this study, we demonstrated that HSPB2 was significantly increased in the neurons of a TBI mouse model, patients, and primary neuron cultures subjected to oxygen/glucose deprivation and reperfusion treatment. Upon creating a tamoxifen-induced neuron-specific HSPB2 overexpression transgenic mouse model, we found that elevated HSPB2 levels promoted long-term sensorimotor recovery and alleviated tissue loss after TBI. We also demonstrated that HSPB2 enhanced white matter structural and functional integrity, promoted central nervous system (CNS) plasticity, and accelerated long-term neural remodeling. Moreover, we found that autophagy occurred around injured brain tissues in patients, and the pro-regenerative effects of HSPB2 relied on its autophagy-promoting function. Mechanistically, HSPB2 may regulate autophagy possibly by forming the HSPB2/BCL2-associated athanogene 3/sequestosome-1 complex to facilitate the clearance of erroneously accumulated proteins in the axons. Treatment with the autophagy inhibitor chloroquine during the acute stage or delayed induction of HSPB2 remarkably impeded HSPB2's long-term reparative function, indicating the importance of acute-stage autophagy in long-term neuro-regeneration. Our findings highlight the beneficial role of HSPB2 in neuro-regeneration and functional recovery following acute CNS injury, thereby emphasizing the therapeutic potential of autophagy regulation for enhancing neuro-regeneration.
自噬是促进神经再生的一个有前途的靶点,而神经再生对于创伤性脑损伤(TBI)后的感觉运动恢复至关重要。小分子热休克蛋白 HSPB2 是否可以减少 TBI 后的损伤并促进恢复尚不清楚。在这项研究中,我们证明 HSPB2 在 TBI 小鼠模型、患者和原代神经元培养物中的神经元中显著增加,这些神经元受到氧/葡萄糖剥夺和再灌注处理。在创建了一种他莫昔芬诱导的神经元特异性 HSPB2 过表达转基因小鼠模型后,我们发现升高的 HSPB2 水平促进了 TBI 后的长期感觉运动恢复和组织损失减轻。我们还证明 HSPB2 增强了白质的结构和功能完整性,促进了中枢神经系统(CNS)的可塑性,并加速了长期的神经重塑。此外,我们发现 HSPB2 在患者的受损脑组织周围发生自噬,并且 HSPB2 的促再生作用依赖于其促进自噬的功能。从机制上讲,HSPB2 可能通过形成 HSPB2/BCL2 相关的自噬蛋白 3/隔离蛋白-1 复合物来调节自噬,从而促进轴突中错误积累的蛋白质的清除。在急性期用自噬抑制剂氯喹处理或延迟诱导 HSPB2,会显著阻碍 HSPB2 的长期修复功能,这表明急性期自噬对长期神经再生很重要。我们的研究结果强调了 HSPB2 在急性中枢神经系统损伤后神经再生和功能恢复中的有益作用,从而强调了自噬调节增强神经再生的治疗潜力。