Professor ECE Department, Sreenidhi Institute of Science and Technology, Hyderabad, India.
Professor ECE Department, Y.S.R. Engineering College of Yogi Vemana University, Proddatur, India.
Network. 2023 Feb-Nov;34(4):221-249. doi: 10.1080/0954898X.2023.2237587. Epub 2023 Aug 22.
In order to guarantee the desired quality of machined products, a reliable surface roughness assessment is essential. Using a surface profile metre with a contact stylus, which can produce accurate measurements of surface profiles, is the most popular technique for determining the surface roughness of machined items. One of the limitations of this technique is the work piece surface degradation brought on by mechanical contact between the stylus and the surface. Hence, in this paper, a roughness assessment technique based on the suggested Taylor-Gorilla troops optimizer-based Deep Neuro-Fuzzy Network (Taylor-GTO based DNFN) is proposed for estimating the surface roughness. Pre-processing, data augmentation, feature extraction, feature fusion, and roughness estimation are the procedures that the suggested technique uses to complete the roughness estimate procedure. Roughness estimation is performed using DNFN that has been trained using Taylor-GTO, which was created by combining the Taylor series with the Gorilla troop's optimizer. The created Taylor-GTO based DNFN model has minimum Mean Absolute Error, Mean Square Error, and RMSE of 0.403, 0.416, and 1.149, respectively.
为了保证加工产品的理想质量,可靠的表面粗糙度评估是必不可少的。使用带有接触式测针的表面轮廓仪进行测量,是确定加工件表面粗糙度最常用的技术,这种技术可以对表面轮廓进行精确测量。这种技术的一个局限性是测针与表面之间的机械接触会导致工件表面退化。因此,在本文中,提出了一种基于建议的泰勒-大猩猩部队优化器的深度神经模糊网络(Taylor-GTO 基 DNFN)的粗糙度评估技术,用于估计表面粗糙度。建议的技术使用预处理、数据增强、特征提取、特征融合和粗糙度估计来完成粗糙度估计过程。使用泰勒-大猩猩部队优化器创建的泰勒系列与大猩猩部队优化器相结合而创建的 Taylor-GTO 对深度神经模糊网络(DNFN)进行训练,以进行粗糙度估计。所创建的基于 Taylor-GTO 的 DNFN 模型的平均绝对误差、均方误差和 RMSE 分别为 0.403、0.416 和 1.149。