Suppr超能文献

用于高效水分解的高熵合金的快速热冲击合成

Flash-Thermal Shock Synthesis of High-Entropy Alloys Toward High-Performance Water Splitting.

作者信息

Cha Jun-Hwe, Cho Su-Ho, Kim Dong-Ha, Jeon Dogyeong, Park Seohak, Jung Ji-Won, Kim Il-Doo, Choi Sung-Yool

机构信息

School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yusenong-gu, Daejeon, 305-701, Republic of Korea.

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

出版信息

Adv Mater. 2023 Nov;35(46):e2305222. doi: 10.1002/adma.202305222. Epub 2023 Sep 22.

Abstract

High-entropy alloys (HEAs) provide unprecedented physicochemical properties over unary nanoparticles (NPs). According to the conventional alloying guideline (Hume-Rothery rule), however, only size-and-structure similar elements can be mixed, limiting the possible combinations of alloying elements. Recently, it has been reported that based on carbon thermal shocks (CTS) in a vacuum atmosphere at high temperature, ultrafast heating/cooling rates and high-entropy environment play a critical role in the synthesis of HEAs, ruling out the possibility of phase separation. Since the CTS requires conducting supports, the Joule-heating efficiencies rely on the carbon qualities, featuring difficulties in uniform heating along the large area. This work proposes a photo-thermal approach as an alternative and innovative synthetic method that is compatible with ambient air, large-area, remote process, and free of materials selection. Single flash irradiation on carbon nanofibers induced momentary high-temperature annealing (>1800 °C within 20 ms duration, and ramping/cooling rates >10 K s ) to successfully decorate HEA NPs up to nine elements with excellent compatibility for large-scale synthesis (6.0 × 6.0 cm of carbon nanofiber paper). To demonstrate their feasibility toward applications, senary HEA NPs (PtIrFeNiCoCe) are designed and screened, showing high activity (η = 777 mV) and excellent stability (>5000 cycles) at the water splitting, including hydrogen evolution reactions and oxygen evolution reactions.

摘要

与单一纳米颗粒(NP)相比,高熵合金(HEA)具有前所未有的物理化学性质。然而,根据传统的合金化准则(休姆-罗瑟里规则),只有尺寸和结构相似的元素才能混合,这限制了合金元素的可能组合。最近,有报道称,基于高温真空气氛中的碳热冲击(CTS),超快的加热/冷却速率和高熵环境在HEA的合成中起着关键作用,排除了相分离的可能性。由于CTS需要导电载体,焦耳热效率依赖于碳的质量,在大面积上均匀加热存在困难。这项工作提出了一种光热方法,作为一种替代的创新合成方法,它与环境空气兼容、可大面积操作、远程处理且不受材料选择限制。对碳纳米纤维进行单次闪光照射会引起瞬间高温退火(在20毫秒内温度>1800°C,升温/降温速率>10 K s),从而成功地在高达九种元素的HEA NPs上进行修饰,对大规模合成(6.0×6.0 cm的碳纳米纤维纸)具有出色的兼容性。为了证明它们在应用方面的可行性,设计并筛选了六元HEA NPs(PtIrFeNiCoCe),其在水分解反应(包括析氢反应和析氧反应)中表现出高活性(η = 777 mV)和出色的稳定性(>5000次循环)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验