Wang Shipeng, Liu Qiangchun, Li Shikuo, Huang Fangzhi, Zhang Hui
Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601, P. R. China.
School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, P. R. China.
ACS Nano. 2024 Feb 13;18(6):5040-5050. doi: 10.1021/acsnano.3c11408. Epub 2024 Jan 29.
High entropy alloys (HEA) have garnered significant attention in electromagnetic wave (EMW) absorption due to their efficient synergism among multiple components and tunable electronic structures. However, their high density and limited chemical stability hinder their progress as lightweight absorbers. Incorporating HEA with carbon offers a promising solution, but synthesizing stable HEA/carbon composite faces challenges due to the propensity for phase separation during conventional heat treatments. Moreover, EMW absorption mechanisms in HEAs may be different from established empirical models due to their high-entropy effect. This underscores the urgent need to synthesize stable and lightweight HEA/carbon absorbers and uncover their intrinsic absorption mechanisms. Herein, we successfully integrated a quinary FeCoNiCuMn HEA into a honeycomb-like porous carbon nanofiber (HCNF) using electrostatic spinning and the Joule-heating method. Leveraging the inherent lattice distortion effects and honeycomb structure, the HCNF/HEA composite demonstrates outstanding EMW absorption properties at an ultralow filler loading of 2 wt %. It achieves a minimum reflection loss of -65.8 dB and boasts a maximum absorption bandwidth of up to 7.68 GHz. This study not only showcases the effectiveness of combining HCNF with HEA, but also underscores the potential of Joule-heating synthesis for developing lightweight HEA-based absorbers.
高熵合金(HEA)由于其多种成分之间的高效协同作用和可调节的电子结构,在电磁波(EMW)吸收方面受到了广泛关注。然而,它们的高密度和有限的化学稳定性阻碍了其作为轻质吸收剂的发展。将高熵合金与碳结合提供了一个有前景的解决方案,但由于传统热处理过程中容易发生相分离,合成稳定的高熵合金/碳复合材料面临挑战。此外,由于其高熵效应,高熵合金中的电磁波吸收机制可能与已有的经验模型不同。这凸显了迫切需要合成稳定且轻质的高熵合金/碳吸收剂,并揭示其内在吸收机制。在此,我们利用静电纺丝和焦耳加热法成功地将一种五元FeCoNiCuMn高熵合金集成到蜂窝状多孔碳纳米纤维(HCNF)中。利用固有的晶格畸变效应和蜂窝结构,HCNF/HEA复合材料在2 wt%的超低填料负载下表现出优异的电磁波吸收性能。它实现了-65.8 dB的最小反射损耗,并拥有高达7.68 GHz的最大吸收带宽。这项研究不仅展示了将HCNF与HEA结合的有效性,还强调了焦耳热合成在开发轻质高熵合金基吸收剂方面的潜力。