Suppr超能文献

低剂量 CT 筛查持续性亚实性肺结节:放射组学中的一级特征。

Low-Dose CT Screening of Persistent Subsolid Lung Nodules: First-Order Features in Radiomics.

机构信息

Department of Thoracic Surgery, St. Luke's International Hospital, Tokyo, Japan.

Graduate School of Public Health, St. Luke's International University, Tokyo, Japan.

出版信息

Thorac Cardiovasc Surg. 2024 Oct;72(7):542-549. doi: 10.1055/a-2158-1364. Epub 2023 Aug 22.

Abstract

BACKGROUND

Nondisappearing subsolid nodules requiring follow-up are often detected during lung cancer screening, but changes in their invasiveness can be overlooked owing to slow growth. We aimed to develop a method for automatic identification of invasive tumors among subsolid nodules during multiple health checkups using radiomics technology based on low-dose computed tomography (LD-CT) and examine its effectiveness.

METHODS

We examined patients who underwent LD-CT screening from 2014 to 2019 and had lung adenocarcinomas resected after 5-year follow-ups. They were categorized into the invasive or less-invasive group; the annual growth/change rate (Δ) of the nodule voxel histogram using three-dimensional CT (e.g., tumor volume, solid volume percentage, mean CT value, variance, kurtosis, skewness, and entropy) was assessed. A discriminant model was designed through multivariate regression analysis with internal validation to compare its efficacy with that of a volume doubling time of < 400 days.

RESULTS

The study included 47 tumors (23 invasive, 24 less invasive), with no significant difference in the initial tumor volumes. Δskewness was identified as an independent predictor of invasiveness (adjusted odds ratio, 0.021;  = 0.043), and when combined with Δvariance, it yielded high accuracy in detecting invasive lesions (88% true-positive, 80% false-positive). The detection model indicated surgery 2 years earlier than the volume doubling time, maintaining accuracy (median 3 years vs.1 year before actual surgery,  = 0.011).

CONCLUSION

LD-CT radiomics showed promising potential in ensuring timely detection and monitoring of subsolid nodules that warrant follow-up over time.

摘要

背景

肺癌筛查中经常会发现无法消失的亚实性结节需要随访,但由于生长缓慢,可能会忽略其侵袭性变化。我们旨在开发一种基于低剂量计算机断层扫描(LD-CT)的放射组学技术,用于自动识别多次健康检查中亚实性结节中的侵袭性肿瘤,并检验其有效性。

方法

我们检查了 2014 年至 2019 年期间接受 LD-CT 筛查并在 5 年随访后切除肺腺癌的患者。将他们分为侵袭性或低侵袭性组;使用三维 CT(例如,肿瘤体积、实性体积百分比、平均 CT 值、方差、峰度、偏度和熵)评估结节体素直方图的年度增长/变化率(Δ)。通过多元回归分析进行内部验证设计判别模型,以比较其与体积倍增时间<400 天的效果。

结果

该研究纳入了 47 个肿瘤(23 个侵袭性,24 个低侵袭性),初始肿瘤体积无显著差异。Δ偏度被确定为侵袭性的独立预测因子(调整后的优势比,0.021;P=0.043),与Δ方差结合使用时,在检测侵袭性病变方面具有较高的准确性(真阳性率 88%,假阳性率 80%)。检测模型比体积倍增时间更早提示手术,且保持准确性(中位数为 3 年比实际手术前 1 年,P=0.011)。

结论

LD-CT 放射组学显示出在确保亚实性结节随时间需要随访的及时检测和监测方面有很大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验