Suppr超能文献

基于超声视频的放射组学分析用于鉴别乳腺良恶性病变

Ultrasound Video-Based Radiomics Analysis for Differentiating Benign and Malignant Breast Lesions.

作者信息

Wu Jiangfeng, Ge Lijing, Jin Yun, Wang Xiaoyun

机构信息

Department of Ultrasound, Dongyang People's Hospital, Dongyang, China.

Department of Nephrology, Dongyang People's Hospital, Dongyang, China.

出版信息

Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251377374. doi: 10.1177/15330338251377374. Epub 2025 Sep 8.

Abstract

ObjectiveTo evaluate the diagnostic performance of a combined model incorporating ultrasound video-based radiomics features and clinical variables for distinguishing between benign and malignant breast lesions.MethodsA total of 346 patients (173 benign and 173 malignant) were retrospectively enrolled. Breast ultrasound videos were acquired and processed using semi-automatic segmentation in 3D Slicer. Radiomics features were extracted from volumetric tumor regions and refined using feature selection methods. Models were constructed using clinical variables, radiomics features, and their combination. Model performance was evaluated using receiver operating characteristic (ROC) analysis and area under the curve (AUC) values.ResultsThe clinical model incorporating age, tumor size, and Breast Imaging Reporting and Data System (BI-RADS) classification achieved an AUC of 0.873. The radiomics model, utilizing 14 selected features, attained an AUC of 0.836. The combined model, integrating radiomics and clinical data, demonstrated significantly improved predictive performance with an AUC of 0.926, surpassing the BI-RADS-based model (AUC = 0.737). Internal validation using bootstrap resampling confirmed the robustness of the combined model (AUC = 0.901-0.954).ConclusionThe integration of ultrasound video-based radiomics with clinical characteristics significantly improves the differentiation of benign and malignant breast tumors compared to conventional BI-RADS evaluation. This approach may enhance diagnostic accuracy and facilitate more precise clinical decision-making.

摘要

目的

评估一种结合基于超声视频的放射组学特征和临床变量的联合模型对乳腺良恶性病变的诊断性能。

方法

回顾性纳入346例患者(173例良性病变和173例恶性病变)。使用3D Slicer中的半自动分割方法采集并处理乳腺超声视频。从肿瘤体积区域提取放射组学特征,并使用特征选择方法进行优化。使用临床变量、放射组学特征及其组合构建模型。使用受试者操作特征(ROC)分析和曲线下面积(AUC)值评估模型性能。

结果

包含年龄、肿瘤大小和乳腺影像报告和数据系统(BI-RADS)分类的临床模型的AUC为0.873。利用14个选定特征的放射组学模型的AUC为0.836。整合放射组学和临床数据的联合模型显示出显著提高的预测性能,AUC为0.926,超过了基于BI-RADS的模型(AUC = 0.737)。使用自助重采样进行的内部验证证实了联合模型的稳健性(AUC = 0.901 - 0.954)。

结论

与传统的BI-RADS评估相比,基于超声视频的放射组学与临床特征的整合显著提高了乳腺良恶性肿瘤的鉴别能力。这种方法可能会提高诊断准确性并促进更精确的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a1a/12417664/6ae7ffe09fad/10.1177_15330338251377374-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验