Suppr超能文献

基于人工智能提取的影像组学特征预测肺磨玻璃结节病理侵袭性的机器学习模型

Machine Learning Model for Predicting Pathological Invasiveness of Pulmonary Ground-Glass Nodules Based on AI-Extracted Radiomic Features.

作者信息

Yang Guozhen, Huang Yuanheng, Chen Huiguo, Wu Weibin, Wu Yonghui, Zhang Kai, Li Xiaojun, Xu Jiannan, Zhang Jian

机构信息

Department of Cardiothoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

出版信息

Thorac Cancer. 2025 Aug;16(15):e70128. doi: 10.1111/1759-7714.70128.

Abstract

BACKGROUND

With the widespread adoption of low-dose CT screening, the detection of pulmonary ground-glass nodules (GGNs) has risen markedly, presenting diagnostic challenges in distinguishing preinvasive lesions from invasive adenocarcinomas (IAC). This study aimed to develop a machine learning (ML)-based model using artificial intelligence (AI)-extracted CT radiomic features to predict the invasiveness of GGNs.

METHODS

A retrospective cohort of 285 patients (148 with preinvasive lesions, 137 with IAC) from the Lingnan Campus was divided into training and internal validation sets (8:2). An independent cohort of 210 patients (118 with preinvasive lesions, 92 with IAC) from the Tianhe Campus served as external validation. Nineteen radiomic features were extracted and filtered using Boruta and LASSO algorithms. Seven ML classifiers were evaluated using AUC-ROC, decision curve analysis (DCA), and SHAP interpretability.

RESULTS

Median CT value, skewness, 3D long-axis diameter, and transverse diameter were ultimately selected for model construction. Among all classifiers, the Gradient Boosting Machine (GBM) model achieved the best performance (AUC = 0.965 training, 0.908 internal validation, and 0.965 external validation). It demonstrated strong accuracy (88.1%), specificity (80.7%), and F1 score (0.87) in the external validation cohort. The GBM model demonstrated superior net clinical benefit. SHAP analysis identified median CT value and skewness as the most influential predictors.

CONCLUSION

This study presents a simplified ML model using AI-extracted radiomic features, which has strong predictive performance and biological interpretability for preoperative risk stratification of GGNs. By leveraging median CT value, skewness, 3D long-axis diameter, and transverse diameter, the model enables accurate and noninvasive differentiation between IAC and indolent lesions, supporting precise surgical planning.

摘要

背景

随着低剂量CT筛查的广泛应用,肺磨玻璃结节(GGN)的检出率显著上升,在区分侵袭前病变与侵袭性腺癌(IAC)方面带来了诊断挑战。本研究旨在开发一种基于机器学习(ML)的模型,利用人工智能(AI)提取的CT影像组学特征来预测GGN的侵袭性。

方法

来自岭南校区的285例患者(148例侵袭前病变,137例IAC)的回顾性队列被分为训练集和内部验证集(8:2)。来自天河校区的210例患者(118例侵袭前病变,92例IAC)的独立队列用作外部验证。使用Boruta和LASSO算法提取并筛选19个影像组学特征。使用AUC-ROC、决策曲线分析(DCA)和SHAP可解释性评估7个ML分类器。

结果

最终选择中位CT值、偏度、三维长轴直径和横径用于模型构建。在所有分类器中,梯度提升机(GBM)模型表现最佳(训练集AUC = 0.965,内部验证集AUC = 0.908,外部验证集AUC = 0.965)。在外部验证队列中,它表现出较高的准确性(88.1%)、特异性(80.7%)和F1分数(0.87)。GBM模型显示出卓越的净临床效益。SHAP分析确定中位CT值和偏度为最具影响力的预测因素。

结论

本研究提出了一种使用AI提取的影像组学特征的简化ML模型,该模型对GGN的术前风险分层具有强大的预测性能和生物学可解释性。通过利用中位CT值、偏度、三维长轴直径和横径,该模型能够准确、无创地区分IAC和惰性病变,支持精确的手术规划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验