Research Centre of the Slovenian Academy of Sciences and Arts (ZRC SAZU), Novi trg 2, 1000, Ljubljana, Slovenia.
Information and Communication Technologies, Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia.
Sci Data. 2023 Aug 23;10(1):558. doi: 10.1038/s41597-023-02455-x.
In our study, we set out to collect a multimodal annotated dataset for remote sensing of Maya archaeology, that is suitable for deep learning. The dataset covers the area around Chactún, one of the largest ancient Maya urban centres in the central Yucatán Peninsula. The dataset includes five types of data records: raster visualisations and canopy height model from airborne laser scanning (ALS) data, Sentinel-1 and Sentinel-2 satellite data, and manual data annotations. The manual annotations (used as binary masks) represent three different types of ancient Maya structures (class labels: buildings, platforms, and aguadas - artificial reservoirs) within the study area, their exact locations, and boundaries. The dataset is ready for use with machine learning, including convolutional neural networks (CNNs) for object recognition, object localization (detection), and semantic segmentation. We would like to provide this dataset to help more research teams develop their own computer vision models for investigations of Maya archaeology or improve existing ones.
在我们的研究中,我们着手收集适用于深度学习的玛雅考古遥感多模态标注数据集。该数据集涵盖了位于中尤卡坦半岛的最大的古代玛雅城市中心之一——查克吞(Chactún)周围的区域。该数据集包含五种类型的数据记录:来自机载激光扫描(ALS)数据的光栅可视化和树冠高度模型、哨兵-1 和哨兵-2 卫星数据以及手动数据标注。手动标注(用作二进制掩模)代表研究区域内三种不同类型的古代玛雅结构(类别标签:建筑物、平台和 Aguadas-人工水库)、它们的确切位置和边界。该数据集可与机器学习一起使用,包括用于对象识别、对象定位(检测)和语义分割的卷积神经网络(CNN)。我们希望提供此数据集,以帮助更多的研究团队开发自己的计算机视觉模型,用于玛雅考古学的研究或改进现有的模型。