Mohanty Sharada Prasanna, Czakon Jakub, Kaczmarek Kamil A, Pyskir Andrzej, Tarasiewicz Piotr, Kunwar Saket, Rohrbach Janick, Luo Dave, Prasad Manjunath, Fleer Sascha, Göpfert Jan Philip, Tandon Akshat, Mollard Guillaume, Rayaprolu Nikhil, Salathe Marcel, Schilling Malte
Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
neptune.ml, Warsaw, Poland.
Front Artif Intell. 2020 Nov 16;3:534696. doi: 10.3389/frai.2020.534696. eCollection 2020.
Translating satellite imagery into maps requires intensive effort and time, especially leading to inaccurate maps of the affected regions during disaster and conflict. The combination of availability of recent datasets and advances in computer vision made through deep learning paved the way toward automated satellite image translation. To facilitate research in this direction, we introduce the Satellite Imagery Competition using a modified SpaceNet dataset. Participants had to come up with different segmentation models to detect positions of buildings on satellite images. In this work, we present five approaches based on improvements of U-Net and Mask R-Convolutional Neuronal Networks models, coupled with unique training adaptations using boosting algorithms, morphological filter, Conditional Random Fields and custom losses. The good results-as high as and -from these models demonstrate the feasibility of Deep Learning in automated satellite image annotation.
将卫星图像转化为地图需要大量的精力和时间,尤其是在灾难和冲突期间,这会导致受灾地区的地图不准确。近期数据集的可用性与深度学习在计算机视觉方面取得的进展相结合,为卫星图像自动翻译铺平了道路。为推动这一方向的研究,我们使用经过修改的SpaceNet数据集引入了卫星图像竞赛。参与者必须提出不同的分割模型,以检测卫星图像上建筑物的位置。在这项工作中,我们基于U-Net和Mask R-卷积神经网络模型的改进,提出了五种方法,并结合了使用增强算法、形态学滤波器、条件随机场和自定义损失的独特训练调整。这些模型取得的高达[具体数值1]和[具体数值2]的良好结果证明了深度学习在卫星图像自动标注中的可行性。