Suppr超能文献

基于放射影像的脑肿瘤分割、亚型分类和生存预测的上下文感知深度学习

Context aware deep learning for brain tumor segmentation, subtype classification, and survival prediction using radiology images.

机构信息

Vision Lab, Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23529, USA.

出版信息

Sci Rep. 2020 Nov 12;10(1):19726. doi: 10.1038/s41598-020-74419-9.

Abstract

A brain tumor is an uncontrolled growth of cancerous cells in the brain. Accurate segmentation and classification of tumors are critical for subsequent prognosis and treatment planning. This work proposes context aware deep learning for brain tumor segmentation, subtype classification, and overall survival prediction using structural multimodal magnetic resonance images (mMRI). We first propose a 3D context aware deep learning, that considers uncertainty of tumor location in the radiology mMRI image sub-regions, to obtain tumor segmentation. We then apply a regular 3D convolutional neural network (CNN) on the tumor segments to achieve tumor subtype classification. Finally, we perform survival prediction using a hybrid method of deep learning and machine learning. To evaluate the performance, we apply the proposed methods to the Multimodal Brain Tumor Segmentation Challenge 2019 (BraTS 2019) dataset for tumor segmentation and overall survival prediction, and to the dataset of the Computational Precision Medicine Radiology-Pathology (CPM-RadPath) Challenge on Brain Tumor Classification 2019 for tumor classification. We also perform an extensive performance evaluation based on popular evaluation metrics, such as Dice score coefficient, Hausdorff distance at percentile 95 (HD95), classification accuracy, and mean square error. The results suggest that the proposed method offers robust tumor segmentation and survival prediction, respectively. Furthermore, the tumor classification results in this work is ranked at second place in the testing phase of the 2019 CPM-RadPath global challenge.

摘要

脑肿瘤是大脑中癌细胞的不受控制的生长。肿瘤的准确分割和分类对于后续的预后和治疗计划至关重要。本工作提出了基于上下文感知的深度学习方法,用于使用结构多模态磁共振图像(mMRI)进行脑肿瘤分割、亚型分类和总体生存预测。我们首先提出了一种 3D 上下文感知的深度学习方法,该方法考虑了肿瘤在放射学 mMRI 图像子区域中的位置不确定性,以获得肿瘤分割。然后,我们在肿瘤分割上应用常规的 3D 卷积神经网络(CNN)来实现肿瘤亚型分类。最后,我们使用深度学习和机器学习的混合方法进行生存预测。为了评估性能,我们将提出的方法应用于 2019 年多模态脑肿瘤分割挑战赛(BraTS 2019)数据集进行肿瘤分割和总体生存预测,以及 2019 年计算精准医学放射学-病理学(CPM-RadPath)挑战赛数据集进行肿瘤分类。我们还基于常用的评估指标(如 Dice 得分系数、第 95 百分位的 Hausdorff 距离(HD95)、分类准确性和均方误差)进行了广泛的性能评估。结果表明,所提出的方法分别提供了稳健的肿瘤分割和生存预测。此外,本工作中的肿瘤分类结果在 2019 年 CPM-RadPath 全球挑战赛的测试阶段排名第二。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2f6/7665039/ee61247cf76f/41598_2020_74419_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验