Suppr超能文献

大黄(Rheum tanguticum)染色体水平基因组组装为研究蒽醌类生物合成的进化提供了线索。

A chromosome-scale Rhubarb (Rheum tanguticum) genome assembly provides insights into the evolution of anthraquinone biosynthesis.

机构信息

State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.

CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.

出版信息

Commun Biol. 2023 Aug 23;6(1):867. doi: 10.1038/s42003-023-05248-5.

Abstract

Rhubarb is the collective name for various perennial plants from the genus Rheum L. and the Polygonaceae family. They are one of the most ancient, commonly used, and important herbs in traditional Chinese medicine. Rhubarb is a major source of anthraquinones, but how they are synthesized remains largely unknown. Here, we generate a genome sequence assembly of one important medicinal rhubarb R. tanguticum at the chromosome level, with 2.76 Gb assembled into 11 chromosomes. The genome is shaped by two recent whole-genome duplication events and recent bursts of retrotransposons. Metabolic analyses show that the major anthraquinones are mainly synthesized in its roots. Transcriptomic analysis reveals a co-expression module with a high correlation to anthraquinone biosynthesis that includes key chalcone synthase genes. One CHS, four CYP450 and two BGL genes involved in secondary metabolism show significantly upregulated expression levels in roots compared with other tissues and clustered in the co-expression module, which implies that they may also act as candidate genes for anthraquinone biosynthesis. This study provides valuable insights into the genetic bases of anthraquinone biosynthesis that will facilitate improved breeding practices and agronomic properties for rhubarb in the future.

摘要

大黄是蓼科大黄属多种多年生植物的统称。它们是传统中药中最古老、最常用和最重要的草药之一。大黄是蒽醌类化合物的主要来源,但它们是如何合成的在很大程度上仍是未知的。在这里,我们生成了一个重要药用大黄 R. tanguticum 的染色体水平的基因组序列组装,共组装了 27.6 Gb 到 11 条染色体上。该基因组由两次最近的全基因组复制事件和最近的逆转座子爆发所塑造。代谢分析表明,主要的蒽醌类化合物主要在其根部合成。转录组分析揭示了一个与蒽醌生物合成高度相关的共表达模块,其中包括关键的查尔酮合酶基因。一个 CHS、四个 CYP450 和两个参与次生代谢的 BGL 基因在根部的表达水平与其他组织相比显著上调,并在共表达模块中聚类,这表明它们也可能作为蒽醌生物合成的候选基因。本研究为蒽醌生物合成的遗传基础提供了有价值的见解,这将有助于未来大黄的改良育种实践和农艺性状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd9/10447539/391bd66eb297/42003_2023_5248_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验