Mammoser Claire C, LeMasters Brynn E, Edwards Sydney G, McRae Emma M, Mullins M Hunter, Wang Yiqi, Garcia Nicholas M, Edmonds Katherine A, Giedroc David P, Thielges Megan C
Indiana University Department of Chemistry, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA.
Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA.
Commun Chem. 2023 Aug 23;6(1):175. doi: 10.1038/s42004-023-00977-4.
Blue copper proteins are models for illustrating how proteins tune metal properties. Nevertheless, the mechanisms by which the protein controls the metal site remain to be fully elucidated. A hindrance is that the closed shell Cu(I) site is inaccessible to most spectroscopic analyses. Carbon deuterium (C-D) bonds used as vibrational probes afford nonperturbative, selective characterization of the key cysteine and methionine copper ligands in both redox states. The structural integrity of Nostoc plastocyanin was perturbed by disrupting potential hydrogen bonds between loops of the cupredoxin fold via mutagenesis (S9A, N33A, N34A), variably raising the midpoint potential. The C-D vibrations show little change to suggest substantial alteration to the Cu(II) coordination in the oxidized state or in the Cu(I) interaction with the cysteine ligand. They rather indicate, along with visible and NMR spectroscopy, that the methionine ligand distinctly interacts more strongly with the Cu(I) ion, in line with the increases in midpoint potential. Here we show that the protein structure determines the redox properties by restricting the interaction between the methionine ligand and Cu(I) in the reduced state.
蓝色铜蛋白是用于阐释蛋白质如何调节金属性质的模型。然而,蛋白质控制金属位点的机制仍有待充分阐明。一个障碍是,大多数光谱分析无法检测到闭壳层Cu(I)位点。用作振动探针的碳氘(C-D)键能够对两种氧化还原状态下的关键半胱氨酸和甲硫氨酸铜配体进行非扰动性的选择性表征。通过诱变(S9A、N33A、N34A)破坏了铜蓝蛋白折叠环之间潜在的氢键,从而扰乱了念珠藻质体蓝素的结构完整性,使中点电位发生不同程度的升高。C-D振动变化不大,表明氧化态下Cu(II)配位或Cu(I)与半胱氨酸配体的相互作用没有实质性改变。与可见光谱和核磁共振光谱一起,它们反而表明,甲硫氨酸配体与Cu(I)离子的相互作用明显更强,这与中点电位的升高一致。在这里,我们表明蛋白质结构通过限制还原态下甲硫氨酸配体与Cu(I)之间的相互作用来决定氧化还原性质。