文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于整合生物信息学和单细胞 RNA-seq 分析探讨系统性红斑狼疮和原发性干燥综合征之间的共享分子机制。

Exploring the shared molecular mechanisms between systemic lupus erythematosus and primary Sjögren's syndrome based on integrated bioinformatics and single-cell RNA-seq analysis.

机构信息

Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.

Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.

出版信息

Front Immunol. 2023 Aug 8;14:1212330. doi: 10.3389/fimmu.2023.1212330. eCollection 2023.


DOI:10.3389/fimmu.2023.1212330
PMID:37614232
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10442653/
Abstract

BACKGROUND: Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) are common systemic autoimmune diseases that share a wide range of clinical manifestations and serological features. This study investigates genes, signaling pathways, and transcription factors (TFs) shared between SLE and pSS. METHODS: Gene expression profiles of SLE and pSS were obtained from the Gene Expression Omnibus (GEO). Weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis were conducted to identify shared genes related to SLE and pSS. Overlapping genes were then subject to Gene Ontology (GO) and protein-protein interaction (PPI) network analyses. Cytoscape plugins cytoHubba and iRegulon were subsequently used to screen shared hub genes and predict TFs. In addition, gene set variation analysis (GSVA) and CIBERSORTx were used to calculate the correlations between hub genes and immune cells as well as related pathways. To confirm these results, hub genes and TFs were verified in microarray and single-cell RNA sequencing (scRNA-seq) datasets. RESULTS: Following WGCNA and limma analysis, 152 shared genes were identified. These genes were involved in interferon (IFN) response and cytokine-mediated signaling pathway. Moreover, we screened six shared genes, namely and , out of which three genes, namely and were found to be highly expressed in both microarray and scRNA-seq datasets. IFN response and ITGB2 signaling pathway were identified as potentially relevant pathways. In addition, STAT1 and IRF7 were identified as common TFs in both diseases. CONCLUSION: This study revealed and as the shared genes and identified STAT1 and IRF7 as the common TFs of SLE and pSS. Notably, the IFN response and ITGB2 signaling pathway played vital roles in both diseases. Our study revealed common pathogenetic characteristics of SLE and pSS. The particular roles of these pivotal genes and mutually overlapping pathways may provide a basis for further mechanistic research.

摘要

背景:系统性红斑狼疮(SLE)和原发性干燥综合征(pSS)是常见的系统性自身免疫性疾病,具有广泛的临床表现和血清学特征。本研究探讨了 SLE 和 pSS 之间共享的基因、信号通路和转录因子(TFs)。

方法:从基因表达综合数据库(GEO)中获取 SLE 和 pSS 的基因表达谱。进行加权基因共表达网络分析(WGCNA)和差异表达基因(DEG)分析,以识别与 SLE 和 pSS 相关的共享基因。然后对重叠基因进行基因本体论(GO)和蛋白质-蛋白质相互作用(PPI)网络分析。随后使用 Cytoscape 插件 cytoHubba 和 iRegulon 筛选共享枢纽基因并预测 TFs。此外,还使用基因集变异分析(GSVA)和 CIBERSORTx 计算枢纽基因与免疫细胞及相关通路之间的相关性。为了验证这些结果,在微阵列和单细胞 RNA 测序(scRNA-seq)数据集上验证了枢纽基因和 TFs。

结果:通过 WGCNA 和 limma 分析,确定了 152 个共享基因。这些基因参与干扰素(IFN)反应和细胞因子介导的信号通路。此外,我们筛选出 6 个共享基因,即 和 ,其中 3 个基因,即 、 和 ,在微阵列和 scRNA-seq 数据集中均高度表达。IFN 反应和 ITGB2 信号通路被认为是潜在相关的通路。此外,STAT1 和 IRF7 被鉴定为两种疾病的共同 TFs。

结论:本研究揭示了 和 作为共享基因,并确定了 STAT1 和 IRF7 是 SLE 和 pSS 的共同 TFs。值得注意的是,IFN 反应和 ITGB2 信号通路在两种疾病中均发挥着重要作用。本研究揭示了 SLE 和 pSS 的共同发病特征。这些关键基因和相互重叠的通路的特定作用可能为进一步的机制研究提供基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/282ffec65898/fimmu-14-1212330-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/d4cb5efd79de/fimmu-14-1212330-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/f991d4072ce2/fimmu-14-1212330-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/a713958a3456/fimmu-14-1212330-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/43c7d4440aa7/fimmu-14-1212330-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/859d0d3afa3f/fimmu-14-1212330-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/3225a533c5cb/fimmu-14-1212330-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/1a4e099d4b24/fimmu-14-1212330-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/8debca6569ef/fimmu-14-1212330-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/b6c9719a8b57/fimmu-14-1212330-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/b9162014bc23/fimmu-14-1212330-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/9195a40e9977/fimmu-14-1212330-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/282ffec65898/fimmu-14-1212330-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/d4cb5efd79de/fimmu-14-1212330-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/f991d4072ce2/fimmu-14-1212330-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/a713958a3456/fimmu-14-1212330-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/43c7d4440aa7/fimmu-14-1212330-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/859d0d3afa3f/fimmu-14-1212330-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/3225a533c5cb/fimmu-14-1212330-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/1a4e099d4b24/fimmu-14-1212330-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/8debca6569ef/fimmu-14-1212330-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/b6c9719a8b57/fimmu-14-1212330-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/b9162014bc23/fimmu-14-1212330-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/9195a40e9977/fimmu-14-1212330-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8393/10442653/282ffec65898/fimmu-14-1212330-g012.jpg

相似文献

[1]
Exploring the shared molecular mechanisms between systemic lupus erythematosus and primary Sjögren's syndrome based on integrated bioinformatics and single-cell RNA-seq analysis.

Front Immunol. 2023

[2]
The shared biomarkers and pathways of systemic lupus erythematosus and metabolic syndrome analyzed by bioinformatics combining machine learning algorithm and single-cell sequencing analysis.

Front Immunol. 2022

[3]
Exploration of the shared diagnostic genes and mechanisms between periodontitis and primary Sjögren's syndrome by integrated comprehensive bioinformatics analysis and machine learning.

Int Immunopharmacol. 2024-11-15

[4]
Identification of key interferon-stimulated genes for indicating the condition of patients with systemic lupus erythematosus.

Front Immunol. 2022

[5]
Rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren's syndrome shared megakaryocyte expansion in peripheral blood.

Ann Rheum Dis. 2022-3

[6]
TBK1: A key regulator and potential treatment target for interferon positive Sjögren's syndrome, systemic lupus erythematosus and systemic sclerosis.

J Autoimmun. 2018-4-16

[7]
Germline genetic patterns underlying familial rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren's syndrome highlight T cell-initiated autoimmunity.

Ann Rheum Dis. 2019-12-17

[8]
The inflammatory signature in monocytes of Sjögren's syndrome and systemic lupus erythematosus, revealed by the integrated Reactome and drug target analysis.

Genes Genomics. 2022-10

[9]
Transcriptomics explores potential mechanisms for the development of Primary Sjogren's syndrome to diffuse large B-cell lymphoma in B cells.

BMC Immunol. 2024-7-30

[10]
Identification of key mitochondria-related genes and their relevance to the immune system linking Parkinson's disease and primary Sjögren's syndrome through integrated bioinformatics analyses.

Comput Biol Med. 2024-6

引用本文的文献

[1]
Machine learning approach to single cell transcriptomic analysis of Sjogren's disease reveals altered activation states of B and T lymphocytes.

J Autoimmun. 2025-6

[2]
Shared and distinct peripheral blood immune cell landscape in MCTD, SLE, and pSS.

Cell Biosci. 2025-4-10

[3]
Identification of biomarkers associated with programmed cell death in liver ischemia-reperfusion injury: insights from machine learning frameworks and molecular docking in multiple cohorts.

Front Med (Lausanne). 2025-3-14

[4]
Exploring mitochondrial and ferroptotic mechanisms for systemic lupus erythematosus biomarker identification and therapy.

Sci Rep. 2025-3-17

[5]
Identification of Epigenetic Alteration of the IFI44L Gene in B Cells of Sjogren's Syndrome as a Clinical Biomarker and Molecular Significance.

J Inflamm Res. 2025-2-19

[6]
Proteomics and transcriptomics combined reveal specific immunological markers in autoimmune thyroid disease.

Front Immunol. 2025-1-13

[7]
USP18-mediated protein stabilization of NOTCH1 is associated with altered Th17/Treg cell ratios and B cell-mediated autoantibody secretion in Sjögren syndrome.

Immunol Res. 2024-12-14

[8]
Identification of potential hub genes associated with recurrent miscarriage through combined transcriptomic and proteomic analysis.

Biomol Biomed. 2025-4-26

[9]
Risk factors and prediction model for osteonecrosis of the femoral head in female systemic lupus erythematosus.

Front Immunol. 2024

[10]
Characteristics of the Dynamic Evolutionary Pathway of ADSCs Induced Differentiation into Astrocytes Based on scRNA-Seq Analysis.

Mol Neurobiol. 2025-3

本文引用的文献

[1]
Role of JAK-STAT signaling pathway in pathogenesis and treatment of primary Sjögren's syndrome.

Chin Med J (Engl). 2023-10-5

[2]
Single-cell RNA-sequencing and microarray analyses to explore the pathological mechanisms of chronic thromboembolic pulmonary hypertension.

Front Cardiovasc Med. 2022-11-10

[3]
Biomarkers of interstitial lung disease associated with primary Sjögren's syndrome.

Eur J Med Res. 2022-10-10

[4]
Bioinformatics and systems biology approach to identify the pathogenetic link of Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.

Front Immunol. 2022

[5]
Emerging concepts of type I interferons in SLE pathogenesis and therapy.

Nat Rev Rheumatol. 2022-10

[6]
Integrated Bioinformatic Analysis of the Shared Molecular Mechanisms Between Osteoporosis and Atherosclerosis.

Front Endocrinol (Lausanne). 2022

[7]
Epigenetic Regulation of IFI44L Expression in Monocytes Affects the Functions of Monocyte-Derived Dendritic Cells in Systemic Lupus Erythematosus.

J Immunol Res. 2022

[8]
Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus.

Science. 2022-4-8

[9]
Type 1 interferon status in systemic lupus erythematosus: a longitudinal analysis.

Lupus Sci Med. 2022-2

[10]
Key immune-related gene ITGB2 as a prognostic signature for acute myeloid leukemia.

Ann Transl Med. 2021-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索