Li Yanbin, Huang William, Li Yuzhang, Chiu Wah, Cui Yi
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
ACS Nano. 2020 Aug 25;14(8):9263-9276. doi: 10.1021/acsnano.0c05020. Epub 2020 Jul 28.
Cryogenic electron microscopy (cryo-EM) was the basis for the 2017 Nobel Prize in Chemistry for its profound impact on the field of structural biology by freezing and stabilizing fragile biomolecules for near atomic-resolution imaging in their native states. Beyond life science, the development of cryo-EM for the physical sciences may offer access to previously inaccessible length scales for materials characterization in systems that would otherwise be too sensitive for high-resolution electron microscopy and spectroscopy. Weakly bonded and reactive materials that typically degrade under electron irradiation and environmental exposure can potentially be stabilized by cryo-EM, opening up exciting opportunities to address many central questions in materials science. New discoveries and fundamental breakthroughs in understanding are likely to follow. In this Perspective, we identify six major areas in materials science that may benefit from the interdisciplinary application of cryo-EM: (1) batteries, (2) soft polymers, (3) metal-organic frameworks, (4) perovskite solar cells, (5) electrocatalysts, and (6) quantum materials. We highlight long-standing questions in each of these areas that cryo-EM can potentially address, which would firmly establish the powerful tool's broad scope and utility beyond biology.
低温电子显微镜(cryo-EM)因其通过冷冻和稳定脆弱的生物分子,使其在自然状态下达到近原子分辨率成像,对结构生物学领域产生了深远影响,成为2017年诺贝尔化学奖的基础。除生命科学外,用于物理科学的低温电子显微镜的发展,可能为材料表征提供进入以前无法达到的长度尺度的途径,这些系统对高分辨率电子显微镜和光谱分析来说过于敏感。通常在电子辐照和环境暴露下会降解的弱键合和活性材料,可能通过低温电子显微镜得到稳定,从而为解决材料科学中的许多核心问题带来令人兴奋的机会。新的发现和理解上的重大突破可能随之而来。在这篇观点文章中,我们确定了材料科学中可能受益于低温电子显微镜跨学科应用的六个主要领域:(1)电池,(2)软聚合物,(3)金属有机框架,(4)钙钛矿太阳能电池,(5)电催化剂,以及(6)量子材料。我们强调了低温电子显微镜在这些领域中可能解决的长期存在的问题,这将牢固确立这一强大工具在生物学之外的广泛范围和实用性。