Suppr超能文献

人类边缘系统中的阻抗节律。

Impedance Rhythms in Human Limbic System.

机构信息

Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905.

Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, 61600 Brno, Czech Republic.

出版信息

J Neurosci. 2023 Sep 27;43(39):6653-6666. doi: 10.1523/JNEUROSCI.0241-23.2023. Epub 2023 Aug 24.

Abstract

The impedance is a fundamental electrical property of brain tissue, playing a crucial role in shaping the characteristics of local field potentials, the extent of ephaptic coupling, and the volume of tissue activated by externally applied electrical brain stimulation. We tracked brain impedance, sleep-wake behavioral state, and epileptiform activity in five people with epilepsy living in their natural environment using an investigational device. The study identified impedance oscillations that span hours to weeks in the amygdala, hippocampus, and anterior nucleus thalamus. The impedance in these limbic brain regions exhibit multiscale cycles with ultradian (∼1.5-1.7 h), circadian (∼21.6-26.4 h), and infradian (∼20-33 d) periods. The ultradian and circadian period cycles are driven by sleep-wake state transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Limbic brain tissue impedance reaches a minimum value in NREM sleep, intermediate values in REM sleep, and rises through the day during wakefulness, reaching a maximum in the early evening before sleep onset. Infradian (∼20-33 d) impedance cycles were not associated with a distinct behavioral correlate. Brain tissue impedance is known to strongly depend on the extracellular space (ECS) volume, and the findings reported here are consistent with sleep-wake-dependent ECS volume changes recently observed in the rodent cortex related to the brain glymphatic system. We hypothesize that human limbic brain ECS changes during sleep-wake state transitions underlie the observed multiscale impedance cycles. Impedance is a simple electrophysiological biomarker that could prove useful for tracking ECS dynamics in human health, disease, and therapy. The electrical impedance in limbic brain structures (amygdala, hippocampus, anterior nucleus thalamus) is shown to exhibit oscillations over multiple timescales. We observe that impedance oscillations with ultradian and circadian periodicities are associated with transitions between wakefulness, NREM, and REM sleep states. There are also impedance oscillations spanning multiple weeks that do not have a clear behavioral correlate and whose origin remains unclear. These multiscale impedance oscillations will have an impact on extracellular ionic currents that give rise to local field potentials, ephaptic coupling, and the tissue activated by electrical brain stimulation. The approach for measuring tissue impedance using perturbational electrical currents is an established engineering technique that may be useful for tracking ECS volume.

摘要

大脑组织的阻抗是一种基本的电学特性,对局部场电位的特征、电突触耦合的程度以及外部电刺激激活的组织体积起着至关重要的作用。我们使用一种研究设备,在五名居住在自然环境中的癫痫患者中跟踪大脑阻抗、睡眠-觉醒行为状态和癫痫样活动。研究发现,杏仁核、海马体和丘脑前核的阻抗在数小时到数周内出现振荡。这些边缘脑区的阻抗表现出多尺度周期,具有超短周期(约 1.5-1.7 小时)、昼夜周期(约 21.6-26.4 小时)和亚昼夜周期(约 20-33 天)。超短周期和昼夜周期的周期由觉醒、非快速眼动(NREM)睡眠和快速眼动(REM)睡眠之间的睡眠-觉醒状态转换驱动。边缘脑组织阻抗在 NREM 睡眠时达到最小值,在 REM 睡眠时达到中间值,并在觉醒时全天升高,在傍晚睡前达到最大值。亚昼夜(约 20-33 天)阻抗周期与明显的行为相关物无关。已知大脑组织阻抗强烈依赖于细胞外空间(ECS)体积,这里报道的发现与最近在啮齿动物皮层中观察到的与大脑糖质系统相关的睡眠-觉醒依赖 ECS 体积变化一致。我们假设,在睡眠-觉醒状态转换过程中,人类边缘脑 ECS 的变化是观察到的多尺度阻抗周期的基础。阻抗是一种简单的电生理生物标志物,可用于跟踪人类健康、疾病和治疗中的 ECS 动态。边缘脑结构(杏仁核、海马体、丘脑前核)的电阻抗显示出多个时间尺度的振荡。我们观察到,具有超短周期和昼夜周期性的阻抗振荡与觉醒、NREM 和 REM 睡眠状态之间的转换有关。还有跨越多个星期的阻抗振荡,没有明确的行为相关物,其起源尚不清楚。这些多尺度阻抗振荡将对产生局部场电位、电突触耦合和电刺激激活的组织的细胞外离子电流产生影响。使用扰动脉冲电流测量组织阻抗的方法是一种成熟的工程技术,可能有助于跟踪 ECS 体积。

相似文献

1
Impedance Rhythms in Human Limbic System.人类边缘系统中的阻抗节律。
J Neurosci. 2023 Sep 27;43(39):6653-6666. doi: 10.1523/JNEUROSCI.0241-23.2023. Epub 2023 Aug 24.
6
Developmental Changes in Ultradian Sleep Cycles across Early Childhood.幼儿期超日睡眠周期的发育变化
J Biol Rhythms. 2017 Feb;32(1):64-74. doi: 10.1177/0748730416685451. Epub 2017 Jan 16.

引用本文的文献

5
Effects of electric fields on the release and content of extracellular vesicles.电场对细胞外囊泡释放及含量的影响
J Extracell Biol. 2024 Nov 29;3(11):e70018. doi: 10.1002/jex2.70018. eCollection 2024 Nov.

本文引用的文献

6
Fluid transport in the brain.脑内液体转运。
Physiol Rev. 2022 Apr 1;102(2):1025-1151. doi: 10.1152/physrev.00031.2020. Epub 2021 May 5.
8
Cycles in epilepsy.癫痫发作的周期。
Nat Rev Neurol. 2021 May;17(5):267-284. doi: 10.1038/s41582-021-00464-1. Epub 2021 Mar 15.
9
Conductance of porous media depends on external electric fields.多孔介质的电导率取决于外电场。
Biophys J. 2021 Apr 20;120(8):1431-1442. doi: 10.1016/j.bpj.2021.02.012. Epub 2021 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验