Suppr超能文献

通过展开-聚集策略从常见蛋白质合成坚固的水下胶。

Synthesis of robust underwater glues from common proteins via unfolding-aggregating strategy.

机构信息

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.

Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China.

出版信息

Nat Commun. 2023 Aug 24;14(1):5145. doi: 10.1038/s41467-023-40856-z.

Abstract

Underwater adhesive proteins secreted by organisms greatly inspires the development of underwater glue. However, except for specific proteins such as mussel adhesive protein, barnacle cement proteins, curli protein and their related recombinant proteins, it is believed that abundant common proteins cannot be converted into underwater glue. Here, we demonstrate that unfolded common proteins exhibit high affinity to surfaces and strong internal cohesion via amyloid-like aggregation in water. Using bovine serum albumin (BSA) as a model protein, we obtain a stable unfolded protein by cleaving the disulfide bonds and maintaining the unfolded state by means of stabilizing agents such as trifluoroethanol (TFE) and urea. The diffusion of stabilizing agents into water exposes the hydrophobic residues of an unfolded protein and initiates aggregation of the unfolded protein into a solid block. A robust and stable underwater glue can thus be prepared from tens of common proteins. This strategy deciphers a general code in common proteins to construct robust underwater glue from abundant biomass.

摘要

生物体分泌的水下黏附蛋白极大地启发了水下胶的发展。然而,除了贻贝类黏附蛋白、藤壶黏合蛋白、卷曲蛋白及其相关重组蛋白等特定蛋白质外,人们认为丰富的普通蛋白质不能转化为水下胶。在这里,我们证明了未折叠的普通蛋白质通过类似淀粉样聚集在水中表现出对表面的高亲和力和强大的内部内聚力。我们使用牛血清白蛋白(BSA)作为模型蛋白,通过切断二硫键并通过三氟乙醇(TFE)和脲等稳定剂保持未折叠状态来获得稳定的未折叠蛋白。稳定剂扩散到水中会暴露出未折叠蛋白的疏水残基,并引发未折叠蛋白聚集形成固体块。因此,可以从数十种普通蛋白质中制备出一种坚固且稳定的水下胶。该策略揭示了普通蛋白质中的一般密码,从而可以从丰富的生物质中构建坚固的水下胶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/601e/10449925/6040752501da/41467_2023_40856_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验