Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Sci Rep. 2023 Aug 24;13(1):13875. doi: 10.1038/s41598-023-40977-x.
Contemporary approaches for animal identification use deep learning techniques to recognize coat color patterns and identify individual animals in a herd. However, deep learning algorithms usually require a large number of labeled images to achieve satisfactory performance, which creates the need to manually label all images when automated methods are not available. In this study, we evaluated the potential of a semi-supervised learning technique called pseudo-labeling to improve the predictive performance of deep neural networks trained to identify Holstein cows using labeled training sets of varied sizes and a larger unlabeled dataset. By using such technique to automatically label previously unlabeled images, we observed an increase in accuracy of up to 20.4 percentage points compared to using only manually labeled images for training. Our final best model achieved an accuracy of 92.7% on an independent testing set to correctly identify individuals in a herd of 59 cows. These results indicate that it is possible to achieve better performing deep neural networks by using images that are automatically labeled based on a small dataset of manually labeled images using a relatively simple technique. Such strategy can save time and resources that would otherwise be used for labeling, and leverage well annotated small datasets.
目前,动物识别主要采用深度学习技术来识别皮毛颜色图案并识别畜群中的个体动物。但是,深度学习算法通常需要大量的标记图像才能达到令人满意的性能,这就需要在没有自动化方法时手动标记所有图像。在本研究中,我们评估了一种半监督学习技术,称为伪标签,它可以提高使用不同大小的标记训练集和更大的未标记数据集训练的用于识别荷斯坦奶牛的深度神经网络的预测性能。通过使用这种技术自动标记以前未标记的图像,我们发现与仅使用手动标记的图像进行训练相比,准确性提高了高达 20.4 个百分点。我们的最终最佳模型在独立测试集上达到了 92.7%的准确率,能够正确识别 59 头奶牛的畜群中的个体。这些结果表明,通过使用基于一小部分手动标记图像的自动标记图像,可以使用相对简单的技术实现性能更好的深度神经网络。这种策略可以节省用于标记的时间和资源,并利用注释良好的小数据集。