Suppr超能文献

炎症 mRNAs、miRNAs 和 lncRNAs 的综合分析揭示了奶牛乳腺炎背后的分子相互作用网络。

Integrated analysis of inflammatory mRNAs, miRNAs, and lncRNAs elucidates the molecular interactome behind bovine mastitis.

机构信息

Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Sci Rep. 2023 Aug 24;13(1):13826. doi: 10.1038/s41598-023-41116-2.

Abstract

Mastitis is known as intramammary inflammation, which has a multifactorial complex phenotype. However, the underlying molecular pathogenesis of mastitis remains poorly understood. In this study, we utilized a combination of RNA-seq and miRNA-seq techniques, along with computational systems biology approaches, to gain a deeper understanding of the molecular interactome involved in mastitis. We retrieved and processed one hundred transcriptomic libraries, consisting of 50 RNA-seq and 50 matched miRNA-seq data, obtained from milk-isolated monocytes of Holstein-Friesian cows, both infected with Streptococcus uberis and non-infected controls. Using the weighted gene co-expression network analysis (WGCNA) approach, we constructed co-expressed RNA-seq-based and miRNA-seq-based modules separately. Module-trait relationship analysis was then performed on the RNA-seq-based modules to identify highly-correlated modules associated with clinical traits of mastitis. Functional enrichment analysis was conducted to understand the functional behavior of these modules. Additionally, we assigned the RNA-seq-based modules to the miRNA-seq-based modules and constructed an integrated regulatory network based on the modules of interest. To enhance the reliability of our findings, we conducted further analyses, including hub RNA detection, protein-protein interaction (PPI) network construction, screening of hub-hub RNAs, and target prediction analysis on the detected modules. We identified a total of 17 RNA-seq-based modules and 3 miRNA-seq-based modules. Among the significant highly-correlated RNA-seq-based modules, six modules showed strong associations with clinical characteristics of mastitis. Functional enrichment analysis revealed that the turquoise module was directly related to inflammation persistence and mastitis development. Furthermore, module assignment analysis demonstrated that the blue miRNA-seq-based module post-transcriptionally regulates the turquoise RNA-seq-based module. We also identified a set of different RNAs, including hub-hub genes, hub-hub TFs (transcription factors), hub-hub lncRNAs (long non-coding RNAs), and hub miRNAs within the modules of interest, indicating their central role in the molecular interactome underlying the pathogenic mechanisms of S. uberis infection. This study provides a comprehensive insight into the molecular crosstalk between immunoregulatory mRNAs, miRNAs, and lncRNAs during S. uberis infection. These findings offer valuable directions for the development of molecular diagnosis and biological therapies for mastitis.

摘要

乳腺炎被称为乳腺内炎症,具有多因素复杂表型。然而,乳腺炎的潜在分子发病机制仍知之甚少。在这项研究中,我们结合使用 RNA-seq 和 miRNA-seq 技术以及计算系统生物学方法,更深入地了解乳腺炎相关的分子互作网络。我们检索和处理了 100 个转录组文库,其中包括 50 个 RNA-seq 和 50 个匹配的 miRNA-seq 数据,这些数据来自感染无乳链球菌和未感染对照的荷斯坦弗里森奶牛的奶中分离的单核细胞。我们使用加权基因共表达网络分析 (WGCNA) 方法分别构建了基于 RNA-seq 和 miRNA-seq 的共表达模块。然后对基于 RNA-seq 的模块进行模块-性状关系分析,以鉴定与乳腺炎临床特征高度相关的模块。进行功能富集分析以了解这些模块的功能行为。此外,我们将基于 RNA-seq 的模块分配到基于 miRNA-seq 的模块,并基于感兴趣的模块构建了一个综合调控网络。为了提高我们发现的可靠性,我们进行了进一步的分析,包括 hub RNA 检测、蛋白质-蛋白质相互作用 (PPI) 网络构建、hub-hub RNA 的筛选以及检测模块的靶标预测分析。我们总共鉴定了 17 个基于 RNA-seq 的模块和 3 个基于 miRNA-seq 的模块。在显著高度相关的基于 RNA-seq 的模块中,有六个模块与乳腺炎的临床特征有很强的关联。功能富集分析表明,绿松石模块与炎症持续和乳腺炎发展直接相关。此外,模块分配分析表明,蓝色基于 miRNA-seq 的模块在后转录水平上调节绿松石基于 RNA-seq 的模块。我们还鉴定了一组不同的 RNA,包括模块内的 hub-hub 基因、hub-hub TF(转录因子)、hub-hub lncRNA(长非编码 RNA)和 hub miRNA,表明它们在无乳链球菌感染致病机制的分子互作网络中起核心作用。这项研究提供了乳腺炎中免疫调节 mRNA、miRNA 和 lncRNA 之间分子相互作用的全面见解。这些发现为乳腺炎的分子诊断和生物治疗的发展提供了有价值的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eacc/10449796/58d0f132c4c0/41598_2023_41116_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验