Suppr超能文献

MC-YOLOv5:一种多类小目标检测算法。

MC-YOLOv5: A Multi-Class Small Object Detection Algorithm.

作者信息

Chen Haonan, Liu Haiying, Sun Tao, Lou Haitong, Duan Xuehu, Bi Lingyun, Liu Lida

机构信息

School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

Shandong Runyi Intelligent Technology Co., Ltd., Jinan 250002, China.

出版信息

Biomimetics (Basel). 2023 Aug 2;8(4):342. doi: 10.3390/biomimetics8040342.

Abstract

The detection of multi-class small objects poses a significant challenge in the field of computer vision. While the original YOLOv5 algorithm is more suited for detecting full-scale objects, it may not perform optimally for this specific task. To address this issue, we proposed MC-YOLOv5, an algorithm specifically designed for multi-class small object detection. Our approach incorporates three key innovations: (1) the application of an improved CB module during feature extraction to capture edge information that may be less apparent in small objects, thereby enhancing detection precision; (2) the introduction of a new shallow network optimization strategy (SNO) to expand the receptive field of convolutional layers and reduce missed detections in dense small object scenarios; and (3) the utilization of an anchor frame-based decoupled head to expedite training and improve overall efficiency. Extensive evaluations on VisDrone2019, Tinyperson, and RSOD datasets demonstrate the feasibility of MC-YOLOv5 in detecting multi-class small objects. Taking VisDrone2019 dataset as an example, our algorithm outperforms the original YOLOv5L with improvements observed across various metrics: mAP50 increased by 8.2%, mAP50-95 improved by 5.3%, F1 score increased by 7%, inference time accelerated by 1.8 ms, and computational requirements reduced by 35.3%. Similar performance gains were also achieved on other datasets. Overall, our findings validate MC-YOLOv5 as a viable solution for accurate multi-class small object detection.

摘要

在计算机视觉领域,多类小目标的检测是一项重大挑战。虽然原始的YOLOv5算法更适合检测全尺寸目标,但对于此特定任务可能无法达到最佳性能。为了解决这个问题,我们提出了MC-YOLOv5,这是一种专门为多类小目标检测设计的算法。我们的方法包含三项关键创新:(1)在特征提取过程中应用改进的CB模块,以捕捉小目标中可能不太明显的边缘信息,从而提高检测精度;(2)引入新的浅层网络优化策略(SNO),以扩大卷积层的感受野并减少密集小目标场景中的漏检情况;(3)利用基于锚框的解耦头来加快训练并提高整体效率。在VisDrone2019、Tinyperson和RSOD数据集上的广泛评估证明了MC-YOLOv5在检测多类小目标方面的可行性。以VisDrone2019数据集为例,我们的算法在各项指标上均优于原始的YOLOv5L:mAP50提高了8.2%,mAP50-95提高了5.3%,F1分数提高了7%,推理时间加快了1.8毫秒,计算需求降低了35.3%。在其他数据集上也取得了类似的性能提升。总体而言,我们的研究结果验证了MC-YOLOv5是精确多类小目标检测的可行解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c085/10452785/0b82773d273a/biomimetics-08-00342-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验