Biomedical Signal and Image Processing Laboratory, Faculty of Engineering and Architectural Science, Toronto Metropolitan University, Toronto, Ontario, Canada.
Toby Hull Cardiac Fibrillation Management Laboratory, Department of Medicine/Cardiology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
PLoS One. 2023 Aug 25;18(8):e0290676. doi: 10.1371/journal.pone.0290676. eCollection 2023.
Chronic stress among young patients (≤ 45 years old) could result in autonomic dysfunction. Autonomic dysfunction could be exhibited via sympathetic hyperactivity, sympathetic nerve sprouting, and diffuse adrenergic stimulation in the atria. Adrenergic spatial densities could alter atrial electrophysiology and increase arrhythmic susceptibility. Therefore, we examined the role of adrenergic spatial densities in creating arrhythmogenic substrates in silico. We simulated three 25 cm2 atrial sheets with varying adrenergic spatial densities (ASD), activation rates, and external transmembrane currents. We measured their effects on spatial and temporal heterogeneity of action potential durations (APD) at 50% and 20%. Increasing ASD shortens overall APD, and maximum spatial heterogeneity (31%) is achieved at 15% ASD. The addition of a few (5% to 10%) adrenergic elements decreases the excitation threshold, below 18 μA/cm2, while ASDs greater than 10% increase their excitation threshold up to 22 μA/cm2. Increase in ASD during rapid activation increases APD50 and APD20 by 21% and 41%, respectively. Activation times of captured beats during rapid activation could change by as much as 120 ms from the baseline cycle length. Rapidly activated atrial sheets with high ASDs significantly increase temporal heterogeneity of APD50 and APD20. Rapidly activated atrial sheets with 10% ASD have a high likelihood (0.7 ± 0.06) of fragmenting otherwise uniform wavefronts due to the transient inexcitability of adrenergically stimulated elements, producing an effective functional block. The likelihood of wave fragmentation due to ASD highly correlates with the spatial variations of APD20 (ρ = 0.90, p = 0.04). Our simulations provide a novel insight into the contributions of ASD to spatial and temporal heterogeneities of APDs, changes in excitation thresholds, and a potential explanation for wave fragmentation in the human atria due to sympathetic hyperactivity. Our work may aid in elucidating an electrophysiological link to arrhythmia initiation due to chronic stress among young patients.
年轻患者(≤ 45 岁)的慢性应激可导致自主神经功能障碍。自主神经功能障碍可通过交感神经活性增加、交感神经发芽和心房弥漫性肾上腺素能刺激表现出来。肾上腺素能空间密度可改变心房电生理并增加心律失常易感性。因此,我们在计算机中研究了肾上腺素能空间密度在产生心律失常性底物中的作用。我们模拟了三个 25 cm2 的心房片,其肾上腺素能空间密度(ASD)、激活率和外部跨膜电流不同。我们测量了它们对 50%和 20%时动作电位时程(APD)空间和时间异质性的影响。增加 ASD 会缩短总 APD,最大空间异质性(31%)在 15% ASD 时达到。添加少量(5%至 10%)肾上腺素能元件会降低兴奋阈值,低于 18 μA/cm2,而 ASD 大于 10%会将其兴奋阈值提高到 22 μA/cm2。快速激活期间 ASD 的增加使 APD50 和 APD20 分别增加 21%和 41%。快速激活期间捕获的搏动的激活时间可能比基线心动周期长度变化高达 120ms。具有高 ASD 的快速激活的心房片会显著增加 APD50 和 APD20 的时间异质性。由于肾上腺素能刺激元件的瞬时不应性,快速激活的 ASD 为 10%的心房片很有可能(0.7±0.06)使原本均匀的波阵面发生碎片化,从而产生有效的功能性阻滞。由于 ASD 导致的波碎片化的可能性与 APD20 的空间变化高度相关(ρ=0.90,p=0.04)。我们的模拟为 ASD 对 APD 的空间和时间异质性、兴奋阈值变化以及由于交感神经活性增加导致的人类心房中波碎片化的潜在解释提供了新的见解。我们的工作可能有助于阐明由于年轻患者的慢性应激导致心律失常发生的电生理联系。