Liang Chao, Rouzhahong Yilimiranmu, Ye Caiyuan, Li Chong, Wang Biao, Li Huashan
School of Physics, Sun Yat-Sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, China.
Nat Commun. 2023 Aug 25;14(1):5198. doi: 10.1038/s41467-023-40756-2.
Learning the global crystal symmetry and interpreting the equivariant information is crucial for accurately predicting material properties, yet remains to be fully accomplished by existing algorithms based on convolution networks. To overcome this challenge, here we develop a machine learning (ML) model, named symmetry-enhanced equivariance network (SEN), to build material representation with joint structure-chemical patterns, to encode important clusters embedded in the crystal structure, and to learn pattern equivariance in different scales via capsule transformers. Quantitative analyses of the intermediate matrices demonstrate that the intrinsic crystal symmetries and interactions between clusters have been exactly perceived by the SEN model and critically affect the prediction performances by reducing effective feature space. The mean absolute errors (MAEs) of 0.181 eV and 0.0161 eV/atom are obtained for predicting bandgap and formation energy in the MatBench dataset. The general and interpretable SEN model reveals the potential to design ML models by implicitly encoding feature relationship based on physical mechanisms.
学习全局晶体对称性并解释等变信息对于准确预测材料特性至关重要,但基于卷积网络的现有算法仍有待完全实现这一点。为了克服这一挑战,我们在此开发了一种名为对称增强等变网络(SEN)的机器学习(ML)模型,以构建具有联合结构 - 化学模式的材料表示,对嵌入晶体结构中的重要簇进行编码,并通过胶囊变压器在不同尺度上学习模式等变性。对中间矩阵的定量分析表明,SEN模型已准确感知到晶体的内在对称性和簇之间的相互作用,并且通过减少有效特征空间对预测性能产生关键影响。在MatBench数据集中预测带隙和形成能时,平均绝对误差(MAE)分别为0.181 eV和0.0161 eV/原子。通用且可解释的SEN模型揭示了通过基于物理机制隐式编码特征关系来设计ML模型的潜力。