Vasylenko Andrij, Gamon Jacinthe, Duff Benjamin B, Gusev Vladimir V, Daniels Luke M, Zanella Marco, Shin J Felix, Sharp Paul M, Morscher Alexandra, Chen Ruiyong, Neale Alex R, Hardwick Laurence J, Claridge John B, Blanc Frédéric, Gaultois Michael W, Dyer Matthew S, Rosseinsky Matthew J
Department of Chemistry, University of Liverpool, Liverpool, UK.
Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool, UK.
Nat Commun. 2021 Sep 21;12(1):5561. doi: 10.1038/s41467-021-25343-7.
The selection of the elements to combine delimits the possible outcomes of synthetic chemistry because it determines the range of compositions and structures, and thus properties, that can arise. For example, in the solid state, the elemental components of a phase field will determine the likelihood of finding a new crystalline material. Researchers make these choices based on their understanding of chemical structure and bonding. Extensive data are available on those element combinations that produce synthetically isolable materials, but it is difficult to assimilate the scale of this information to guide selection from the diversity of potential new chemistries. Here, we show that unsupervised machine learning captures the complex patterns of similarity between element combinations that afford reported crystalline inorganic materials. This model guides prioritisation of quaternary phase fields containing two anions for synthetic exploration to identify lithium solid electrolytes in a collaborative workflow that leads to the discovery of LiSnSCl The interstitial site occupancy combination in this defect stuffed wurtzite enables a low-barrier ion transport pathway in hexagonal close-packing.
用于组合的元素的选择限定了合成化学可能的结果,因为它决定了可能出现的组成、结构范围,进而决定了性质范围。例如,在固态中,一个相场的元素组分将决定找到一种新晶体材料的可能性。研究人员基于对化学结构和键合的理解做出这些选择。关于能产生可合成分离材料的那些元素组合,有大量数据可用,但难以消化如此规模的信息以指导从潜在新化学体系的多样性中进行选择。在此,我们表明无监督机器学习捕捉到了能生成已报道的晶体无机材料的元素组合之间复杂的相似模式。该模型指导对含有两种阴离子的四元相场进行优先合成探索,以在一个协作工作流程中识别锂固体电解质,从而发现LiSnSCl。这种缺陷填充纤锌矿中的间隙位点占据组合在六方密堆积中实现了低势垒离子传输路径。