Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
Int J Mol Sci. 2023 Aug 16;24(16):12853. doi: 10.3390/ijms241612853.
Elevated salinity significantly threatens cotton growth, particularly during the germination and seedling stages. The utilization of primitive species of , specifically , has the potential to facilitate the restoration of genetic diversity that has been depleted due to selective breeding in modern cultivars. This investigation evaluated 45 varieties and a salt-tolerant cotton variety based on 34 morphological, physiological, and biochemical indicators and comprehensive salt tolerance index values. This study effectively identified a total of 19 salt-tolerant and two salt-resistant varieties. Furthermore, transcriptome sequencing of a salt-tolerant genotype (Nayanmian-2; NY2) and a salt-sensitive genotype (Sanshagaopao-2; GP2) revealed 2776, 6680, 4660, and 4174 differentially expressed genes (DEGs) under 0.5, 3, 12, and 24 h of salt stress. Gene ontology enrichment analysis indicated that the DEGs exhibited significant enrichment in biological processes like metabolic (GO:0008152) and cellular (GO:0009987) processes. MAPK signaling, plant-pathogen interaction, starch and sucrose metabolism, plant hormone signaling, photosynthesis, and fatty acid metabolism were identified as key KEGG pathways involved in salinity stress. Among the DEGs, including NAC, MYB, WRKY, ERF, bHLH, and bZIP, transcription factors, receptor-like kinases, and carbohydrate-active enzymes were crucial in salinity tolerance. Weighted gene co-expression network analysis (WGCNA) unveiled associations of salt-tolerant genotypes with flavonoid metabolism, carbon metabolism, and MAPK signaling pathways. Identifying nine hub genes (, , , , , , , ) across various intervals offered insights into the transcriptional regulation mechanism of salt tolerance in . This study lays the groundwork for understanding the important pathways and gene networks in response to salt stress, thereby providing a foundation for enhancing salt tolerance in upland cotton.
盐度升高显著威胁棉花生长,特别是在发芽和幼苗阶段。利用原始的 种,特别是 ,有可能促进由于现代品种的选择性育种而耗尽的遗传多样性的恢复。本研究基于 34 个形态、生理和生化指标以及综合耐盐指数值,对 45 个品种和一个耐盐棉花品种进行了评估。本研究有效鉴定出 19 个耐盐和 2 个耐盐品种。此外,对一个耐盐基因型(Nayanmian-2;NY2)和一个盐敏感基因型(Sanshagaopao-2;GP2)的转录组测序显示,在 0.5、3、12 和 24 h 的盐胁迫下,分别有 2776、6680、4660 和 4174 个差异表达基因(DEGs)。基因本体富集分析表明,DEGs 在代谢(GO:0008152)和细胞(GO:0009987)过程等生物过程中表现出显著的富集。MAPK 信号转导、植物-病原体相互作用、淀粉和蔗糖代谢、植物激素信号转导、光合作用和脂肪酸代谢被确定为参与盐胁迫的关键 KEGG 途径。在 DEGs 中,包括 NAC、MYB、WRKY、ERF、bHLH 和 bZIP 转录因子、受体样激酶和碳水化合物活性酶,在耐盐性中起着关键作用。加权基因共表达网络分析(WGCNA)揭示了耐盐基因型与类黄酮代谢、碳代谢和 MAPK 信号通路的关联。在不同时间间隔内鉴定出 9 个枢纽基因(、、、、、、、),为了解棉花耐盐性的转录调控机制提供了依据。本研究为了解应对盐胁迫的重要途径和基因网络奠定了基础,为提高陆地棉的耐盐性提供了基础。