Song Liang, Xie Xiaodong, Tu Pengcheng, Fan Jingjing, Gao Jie
Xinjiang Transportation Investment (Group) Co., Ltd., Urumqi 830006, China.
Xinjiang Transportation Investment Construction Management Co., Ltd., Urumqi 830099, China.
Materials (Basel). 2023 Aug 16;16(16):5641. doi: 10.3390/ma16165641.
In order to investigate the potential application of low-grade hard asphalt in high-temperature and high-altitude areas, various tests were conducted to analyze the performance and high-temperature rheological properties of 30#, 50#, and 70# matrix asphalt under thermo-oxidative aging and ultraviolet aging. The tests utilized for analysis included the examination of basic asphalt properties, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), gel permeation chromatography (GPC), dynamic shear rheology (DSR), and multi-stress creep recovery (MSCR). The results indicate a progressive decrease in asphalt performance with increasing aging time. Prolonged exposure to thermal oxygen aging and ultraviolet irradiation significantly diminishes the plasticity of asphalt. The carbonyl index and sulfoxide index of asphalt increase after thermal oxygen aging and ultraviolet aging. Notably, 30# asphalt demonstrates greater resistance to aging compared to 50# and 70# asphalt under long-term high ultraviolet radiation. The LMS% of 30#, 50#, and 70# asphalt increases by 14%, 15%, and 16%, respectively. Following photothermal oxidative aging, a larger proportion of lighter components in the asphalt transforms into resins and asphaltenes. The high-temperature rheological properties of the three types of asphalt rank as 30# > 50# > 70#, while within the same type of asphalt, the high-temperature rheological properties rank as PAV > UV3 > UV2 > UV1 > RTFOT > virgin. Elevating temperature, stress level, and stress duration negatively impact the high-temperature stability of asphalt. In general, low-grade asphalt demonstrates superior anti-aging ability and high-temperature rheological properties during the aging process.
为了研究低等级硬沥青在高温和高海拔地区的潜在应用,进行了各种试验,以分析30#、50#和70#基质沥青在热氧老化和紫外线老化条件下的性能及高温流变性能。用于分析的试验包括基本沥青性能检测、傅里叶变换红外光谱(FTIR)、原子力显微镜(AFM)、凝胶渗透色谱(GPC)、动态剪切流变仪(DSR)和多应力蠕变恢复(MSCR)。结果表明,随着老化时间的增加,沥青性能逐渐下降。长时间暴露于热氧老化和紫外线照射会显著降低沥青的可塑性。热氧老化和紫外线老化后,沥青的羰基指数和亚砜指数增加。值得注意的是,在长期老化条件下,30#沥青比50#和70#沥青表现出更强的抗老化能力。30#、50#和70#沥青的LMS%分别增加了14%、15%和16%。光热氧化老化后,沥青中较大比例的轻质组分转化为树脂和沥青质。三种沥青的高温流变性能排序为30#>50#>70#,而在同一种沥青中,高温流变性能排序为PAV>UV3>UV2>UV1>RTFOT>原样。提高温度、应力水平和应力持续时间会对沥青的高温稳定性产生负面影响。总体而言,低等级沥青在老化过程中表现出优异的抗老化能力和高温流变性能。