Suppr超能文献

LSGP-USFNet:基于 Ulam 螺旋特征与脑电图信号的索菲·热尔曼素数位置的自动注意缺陷多动障碍检测

LSGP-USFNet: Automated Attention Deficit Hyperactivity Disorder Detection Using Locations of Sophie Germain's Primes on Ulam's Spiral-Based Features with Electroencephalogram Signals.

机构信息

Electrical-Electronics Engineering Department, Technology Faculty, Firat University, 23119 Elazig, Turkey.

Computer Engineering Department, Engineering Faculty, Inonu University, 44280 Malatya, Turkey.

出版信息

Sensors (Basel). 2023 Aug 8;23(16):7032. doi: 10.3390/s23167032.

Abstract

Anxiety, learning disabilities, and depression are the symptoms of attention deficit hyperactivity disorder (ADHD), an isogenous pattern of hyperactivity, impulsivity, and inattention. For the early diagnosis of ADHD, electroencephalogram (EEG) signals are widely used. However, the direct analysis of an EEG is highly challenging as it is time-consuming, nonlinear, and nonstationary in nature. Thus, in this paper, a novel approach (LSGP-USFNet) is developed based on the patterns obtained from Ulam's spiral and Sophia Germain's prime numbers. The EEG signals are initially filtered to remove the noise and segmented with a non-overlapping sliding window of a length of 512 samples. Then, a time-frequency analysis approach, namely continuous wavelet transform, is applied to each channel of the segmented EEG signal to interpret it in the time and frequency domain. The obtained time-frequency representation is saved as a time-frequency image, and a non-overlapping × sliding window is applied to this image for patch extraction. An × Ulam's spiral is localized on each patch, and the gray levels are acquired from this patch as features where Sophie Germain's primes are located in Ulam's spiral. All gray tones from all patches are concatenated to construct the features for ADHD and normal classes. A gray tone selection algorithm, namely ReliefF, is employed on the representative features to acquire the final most important gray tones. The support vector machine classifier is used with a 10-fold cross-validation criteria. Our proposed approach, LSGP-USFNet, was developed using a publicly available dataset and obtained an accuracy of 97.46% in detecting ADHD automatically. Our generated model is ready to be validated using a bigger database and it can also be used to detect other children's neurological disorders.

摘要

焦虑、学习障碍和抑郁是注意力缺陷多动障碍(ADHD)的症状,ADHD 是一种多动、冲动和注意力不集中的同基因模式。为了对 ADHD 进行早期诊断,人们广泛使用脑电图(EEG)信号。然而,由于 EEG 具有时间消耗大、非线性和非平稳性等特点,直接分析 EEG 具有很大的挑战性。因此,在本文中,提出了一种基于 Ulam 螺旋和 Sophie Germain 素数模式的新方法(LSGP-USFNet)。首先,对 EEG 信号进行滤波以去除噪声,并使用长度为 512 个样本的非重叠滑动窗口对其进行分段。然后,应用时频分析方法,即连续小波变换,对分段 EEG 信号的每个通道进行分析,在时域和频域对其进行解释。将获得的时频表示保存为时频图像,并在该图像上应用非重叠 × 滑动窗口进行补丁提取。在每个补丁上定位一个 × Ulam 螺旋,并从该补丁中获取灰度级作为特征,其中 Sophie Germain 素数位于 Ulam 螺旋中。从所有补丁中获取所有灰度级,并将它们连接起来构造 ADHD 和正常类别的特征。采用一种称为 ReliefF 的灰度级选择算法从代表性特征中获取最终最重要的灰度级。使用支持向量机分类器,并采用 10 折交叉验证标准。我们的方法 LSGP-USFNet 使用公开可用的数据集进行开发,并自动检测 ADHD 的准确率达到 97.46%。我们生成的模型准备使用更大的数据库进行验证,也可以用于检测其他儿童神经障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d6/10459515/11712360e6ff/sensors-23-07032-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验