Suppr超能文献

用于基于脑电图的儿童注意力缺陷多动障碍诊断的卷积神经网络框架

Convolutional neural network framework for EEG-based ADHD diagnosis in children.

作者信息

Hassan Umaisa, Singhal Amit

机构信息

ECE, NSUT, Dwarka, Delhi 110078 India.

出版信息

Health Inf Sci Syst. 2024 Aug 31;12(1):44. doi: 10.1007/s13755-024-00305-7. eCollection 2024 Dec.

Abstract

PURPOSE

Attention-deficit hyperactivity disorder (ADHD) stands as a significant psychiatric and neuro-developmental disorder with global prevalence. The prevalence of ADHD among school children in India is estimated to range from 5% to 8%. However, certain studies have reported higher prevalence rates, reaching as high as 11%. Utilizing electroencephalography (EEG) signals for the early detection and classification of ADHD in children is crucial.

METHODS

In this study, we introduce a CNN architecture characterized by its simplicity, comprising solely two convolutional layers. Our approach involves pre-processing EEG signals through a band-pass filter and segmenting them into 5-s frames. Following this, the frames undergo normalization and canonical correlation analysis. Subsequently, the proposed CNN architecture is employed for training and testing purposes.

RESULTS

Our methodology yields remarkable results, with 100% accuracy, sensitivity, and specificity when utilizing the complete 19-channel EEG signals for diagnosing ADHD in children. However, employing the entire set of EEG channels presents challenges related to the computational complexity. Therefore, we investigate the feasibility of using only frontal brain EEG channels for ADHD detection, which yields an accuracy of 99.08%.

CONCLUSIONS

The proposed method yields high accuracy and is easy to implement, hence, it has the potential for widespread practical deployment to diagnose ADHD.

摘要

目的

注意缺陷多动障碍(ADHD)是一种具有全球普遍性的重要精神和神经发育障碍。据估计,印度学龄儿童中ADHD的患病率在5%至8%之间。然而,某些研究报告的患病率更高,高达11%。利用脑电图(EEG)信号对儿童ADHD进行早期检测和分类至关重要。

方法

在本研究中,我们引入了一种结构简单的卷积神经网络(CNN)架构,仅由两个卷积层组成。我们的方法包括通过带通滤波器对EEG信号进行预处理,并将其分割为5秒的帧。随后,对这些帧进行归一化和典型相关分析。接着,使用所提出的CNN架构进行训练和测试。

结果

我们的方法取得了显著成果,在使用完整的19通道EEG信号诊断儿童ADHD时,准确率、灵敏度和特异性均达到100%。然而,使用整套EEG通道存在与计算复杂性相关的挑战。因此,我们研究了仅使用额叶脑EEG通道进行ADHD检测的可行性,其准确率为99.08%。

结论

所提出的方法具有较高的准确率且易于实现,因此,它有广泛实际应用于诊断ADHD的潜力。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验